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ABSTRACT 

A mathematical model was developped for both stereophotogrammetric measurements and digital elevation 
model, to monitoring soil erosion. The model is based on projective methods and simultaneously adjusts 
ground distances and image plate coordinates by the least squares method. This formulation provides 
complete flexibility in the weighting of the photogrammetric observations and on the type of control 
necessary in the scaling and the orientation of the model. The end product of the photogrammetric process 
is a list of coordinates which define the spatial position of a finite number of discrete points. An 
interpolation procedure was used for modeling functions of two independent variables with irregular con­
trol distribution points. Practical experiments were carried out with UMK-1318 camera in clear cutting 
areas of an experimental forest. The photogrammetric measurements were performed on a Wild Aviolyt BC2 
plotter and were processed by the author's programs DISTANCE and SURFACE. 
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INTRODUCTION 

Soil erosion which leads to a decrease 
productivity, is a major problem in 
areas, especially after a clear cutting. 
(Sneddon &Jordan,1983). 

in soil 
forestry 

Microtopography and movement of soil can be de­
termined by measuring the elevation above a datum 
of a series of points defining a surface. If two 
measurements are made at different times, the 
change in elevation indicates whether erosion or 
deposition is occuring as well as the volume of 
of soil moved (Barbalata, 1972; Frasier & Hooper, 
1983; Jackson & Ritchie, 1988; Lyon & All, 1986) 

However, topographic methods of measurement 
(transit or level surveys and erosion pins) are 
cumbersome to implement and often of insufficient 
frequency or accuracy to detect small changes re­
sulting from erosion process. Close- range photo­
grammetry, on the other hand, offers a means of 
obtaining accurate measurements of eroded sur­
faces and the differencies between these surfaces 
at different times, can give an indication of 
erosion or of deposition patterns and volumes 
(Welch & Jordan, 1983). 

For these reasons, close-range photogrammetry was 
used to measure soil erosion resulting from fo­
restry activities and a specific analytical pho­
togrammetric model was developped to determine 
the ground coordinates of a grid points. Based on 
this three-dimensional coordinate file, a digital 
elevation model was developped and used to define 
the surface at a certain time. 

THE MATHEMATICAL MODEL OF COMBINED PHOTOGRAMME­
TRIC AND GEODETIC ONSERVATIONS 

The idea of the bundle adjustment is to use the 
well known collinearity equations in order to 
obtain a unique solution for the system of obser­
vation equations by the least squares method (Ar­
menakis & Faig, 1988; Barbalata, 1979, 1988-b, 
1988-c, 1990; Brown,1976). 
A mathematical model is presented in this paper, 
involving the bundle adjustment associated with 
geodetic distance measurements. 
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The observation equations which are appended to 
photogrammetric observation equations, are gene­
rated by a number "p" of slope distances "d", 
measured by precise surveying methods between the 
points which appear on the photographs. The equa­
tion had to be transferred into a Cartesian coor­
dinate system and are given in linearized form 
(Barbalata, 1980) by the equation: 

Q 

V + D6d = L 0) 

where: 
i residual vector in slope distance "dO equa-

Q 

D 
tions, 
coefficient matrix of the Jacobians in slope 
distance equations, 

6= correction vector of coordinates of points 
d which define the ends of each distance "d". 

L = vector of discrepancy in slope distance equa­
tions. 

The complete mathematical model is obtained by 
combining the photogrammetric linearized obser-
vation equations with equation (1): 

[~ 
-B 13 

a [ ~J' [: I 
+ B 0 (2) 

_0 0 

where: 
v 
c. 
v 
B 

residual vector in collinearity equations, 
residual vector in constraint equations, 
Jacobians in collinearity equations for orien 
tation parameters, 
Jacobians in collinearity equations for 
ground object points, 
Jacobians in constraint equations. 
correction vector of the orientation parame-
ters, 

6= correction vector of the ground object coor­
dinates. 

The normal equations for a least squares solution 
are then given by the following expression: 

[

N + N 
N7" 

(3) 



The correction vector 6 with dimensions 3nxl is 
d~fined by two components: 
6.d with dimensions 6pxl and 
Zf with dimensions (3n-6p)xl 
The coordinate corrections of the points included 
in 6dvector involve the contribution of observa­
tions of geodetic distances to photogrammetric 
observations of the end points of distance "p", 
whereas the ~~ vector is concerned with (n-2p) 
points which were observed only photogrammetricar 
1y. 

In the case of correlated observations, Nd is a 
full matrix which implies to invert a (6px6p) ma­
trix and a number of n-2p matrices with (3x3) di­
mensions. 

If the geodetic distance observations are consi­
dered as uncorre1ated, then one can simplify the 
inversion of N + Nd matrix. This operation is re­
duced to the inversion of a number of p matrices 
with dimensions (6x6). 

CI _ 

By virtue of the structure of D,6.cJ, Wand L, 
the normal equations can be expressed in the ex­
panded form: 

~d = Diag (Nd
1

, N~, ••••• Ndp) 
(6x6) (6xb) (6x6) (6x6) 

Cd - [Cd
1 

C c\2 •••••••••••• eCd b ]''''' 
(6:') I 

W = Diag ( W1 , W2, e ••••••••••• Wp) 
(pxp) (lxl) (lxl) (lxl) 

(4) 

in which: 

= D;e (l 

Nd~ W-e. Dt 
(6x ) (6xl) (lxl) (1x6) 

aT 
Cdt = D,t W-e L,e 

(6xl) (6xl) (1xl) (lxl) 

We = 1/ ~2d~ 

The solution of the equation system is given by: 

(5) 

6. = f(N + ;h - (N +Nd)-1 NT ]-\ 
(6mxl) l(6mx6m) (3nx3n) (3nx6m) 

* r (c+ch - N (N+Nd)-1 (c+Cd) J 
~6mxl) (6mx3n) (3nxl) 

Once the vector of exterior orientation parame­
ters 6. has thus been obtained, the vector of 
ground point coordinates can be computed from: 

LS = r N+Nd j-ir C+Cd ]- r N+Nd ]-1 NT' 6. 
(3nxl) ~3nx3n) (3nxl) ~3nx3n) (3nx6m)(6mxl) 

(6) 

o 
By virtue of the block diagona1ity of N + Nand 
N + N.J matrices, each distance "d1 and each point 
"j" can be treated independently after the evalu­
ation of 6. vector: 

~ Q ] 1 ~ "-r Q 6. = ST+N'" C +c 1 
(6mxl) (6mx6m) (6mxl) 

(7) 

For each dis tance "1" the ,6d~vec tor solution is: 

Zd~= r. N+Nc\ 1-1 
[ c+cc:!] - fN+NJ J.1 NT-e 6. (8) 

(6xl) (6x6) .e. (6xl) { l (6x6) f( 6x6m) (6mxl) 
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For each point "j", the ~jvector solution is: 

.6jc N j1 cj - QJ ~ (9) 

for j = (2p+l, 2p+2, •••••• n) 
where: 

p n 
S,. >-: S2{-1,2{ + .2 S . 

J 
(6mx6m) 1=1 (6mx6m) j=2p+l (6mx6m) 

A 
p 

2 2.f-112~ 
11 .., 

CT 2: + ~ cj 
(6mxl) 1=1 (6mxl) j=2p+l (6mxl) 

Because each distance "d-(" is defined by two end 
points: 21-1 and 21, it results the following 
normal coefficient equation matrix: 

S2f-~12f = (N2f-t+N2R)-N2{-1)2fIN2f-1,Jf +NdeJ-1NJ-e~I,2i 
(6mx6m) (6mx6m) (6mx6) (6x6) (6x6m) 

(10) 

+ Cd-R] 
(6xl) 

and for each stereotriangu1ated point (j=2p+l, 
2p+2, ••••• n), the corresponding matrices: 

(11) 

Finally, to evaluate the 6dfcorrection vector 
which corresponds to end points of each geodetic 
measured distance d~, it is necessary to consider 
the following matrices and vectors: 

r
N + Nd.f]= rN 2..f -1,J 2{ + N d f ] 
(6x6) L (6x6) (6x6) 

with: _ 

(Nf e-1 j N2~) IN" 2.~-1 2-e 1 = Diag 
(6x6) ( x3) Ox3) 

and: (12) [c + Cdf] -[c f 2{+ CJ :e1 
with 

:(6Xl) (txt)' (6xl) 

C Z-t-1 2.-t = r - r C Z{ -1 C 2 
(6xl) 1 (3xl) OXl){ 

A computer program called DISTANCE was deve10pped 
and its formulation is based on the principle of 
olservation equations, as described in the above 
paragraph. 

THE MATHEHATICAL HODEL OF DEH 

The development of mathematical models that pre­
dict soil erosion and deposition on three-dimen­
sional catchments also requires techniques that 
can measure distributed soil movement in order to 
test and to verify the model. In the case of wa­
ter erosion risk, the most popular predictive mo­
del is the universal soil loss equation (USLE): 

A = RKLSCP (13) 
where: 
A is the average annual soil loss per unit area 

(in tonnes!ha), 
R is a measure of the erosivity of the rain fall 

or the surface runoff in a given region, 



K is the inherent erodibility of a particular 
soil, 

L is a dimensionless slope-length factor, 
S is a dimensionless slope-steepness factor, 
C accounts for the effects of land management, 
P reflects specialized soil conservation practi­

ces. 

For a particular soil landform class, a characte­
ristic slope length is computed from a digital 
elevation model (DEM). The use of DEM data to ge­
nerate the L, S factor values, is an essential 
component to evaluate equation (13). 

The developments in analytical photogrammetric 
methods have resulted in the increasing availabi­
lity of digital elevation data and use of DTM in 
various engineering planing and design (Balce, 
1987; Barbalata, 1988; Barbalata and Lebel, 1991; 
Wong and Siyam, 1983). The aim of this chapter 
is to elaborate a mathematical model for the 
determination of surface relief and elevation. 

The major steps of this investigation are: 

(a) Generate a grid pattern with different spa­
cing (generally d/3) where "d" is the average 
distance between neighbouring points stereotri­
angulated by the method described in the prece­
dent part, respectively: 

d 
s 

L d~ 
s i=1 

where s is the total number of considered dis tan-

squares: 

U 
(3x!) 

N- 1 C 
(3x3) (3x!) 

where: (16) 

C 
(3x!) 

.,-
AWZ; W =Diag(W 1 ,Wz , ••• Wn) 

(nxn) 

/
_2 

W = 1 rj 

Because the normal equations operating on a com­
mon parametric vector are additive,one can write: 

n n 
N ~ N . C;> C . Nj = A; W J Aj 

J=1 'J P1 J 
(3x3) (3x3) (3xl) (3x3) 

C 
(3x1) 

(17) 

(d) Determine the predicted reference variance 
from: 

f 

V T W V = 2: v·
2 

w • J J 

f n-3 wherein (18) 

vj = A.JU = Zj 

(e) Generate the digital elevation data on the 
grid pattern using the equation: 

- -
Z~l = a + bXi,k + cY ~)\ (19) 

where both"bH and "c" coefficients represent the 
slope on OX and OY directions, respectively. 

ces. (f) In accord with (Jancaitis and Junkins, 1973) 

(b) Devide the surface in zones of approximately 
even slopes and a number of n=4 •• 8 control points 
which were stereotriangulated. 

(c) Determine from spatial coordinates of control 
points the characteristic coefficients of the eqfr 
tion of the plane: 

Z = a + bX + cY (14) 

where Xj , Yj control point coordinates are the 
reduced coordinates to the center of the zone DC" 

with the coordinates Xc, Y~, respectively: 

X' X' - Xc.. ; y. =. v' - Yc... J J J .LJ 

2 -2 _2 
(j 4 ••• 8) r· X' + Yj; = 1,2 ... n; n = 

J J 

The general system of error equations can be ex­
pressed in matrix form as: 

where: 

1

1 

A = 1 
(nx3) 1 

AU - Z = V, 

u 
(3x!) 

b 

the surface of each square is well defined by a 
polynomial function of the form: 

F
z 

= Z = ± ~ anoxP-Zy2+a4/1 x
3

Y+at,,3 xy 3 (20) 
f=O f,=orc. 

The polynomial function (20) with twelve terms, 
satisfies at two essential conditions: 

(1) Continuity of elevation data between neigh­
bouring squares and continuity of the slope along 
of an adjacent side of two neighbouring squares. 

(2) Continuity of the slope of perpendicular di­
rections considered at the ends of adjacent sides 
of each neighbouring square. 

For each grid square one can generate a set of 
twelve observation equations, three equations for 
each corner respectively, of the form: 

i. :l. a;'Q xf>1y f+a4,1 X
3

Y+a4
1
3 XY3 =Z ' k. 

f=o !=O /' " 
ruFz: Ic>Fz 
g;- b <)y 

or in matrix form: 

Bit 
(3xI2) 

CUe 
(3x!) 

c 

(2!) 

(15) wherein 

Z 
(nx!) 

The system of normal equations formed from weigh­
ted independent observations is solved by least 
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f XY X' 
B· = 0 1 0 2X 

t-,k. 
(31(42. 0 

0 0 

C4 k [Z b 

2-
Y XY 

0 Y 

2Y X 

c 1: ik 

x3 3 X2y XY~ XY3 

X3~ Y 

3X2 0 2XY y2. y3 3XZ.Y 

0 3Y2. X 2- 2XY 3XY2 x3 



For a grid square, the system corresponding to 
four corners will be: 

B .6 C 
(12x12) (12xl) (12xl) 

in which: 

B 

T 

[B ~/' 
[Ti/k 

with the least squares solution: 

(22) 

(23) 

The B matrices being identical for all grid squa­
res, it is necesary to invert only once and then 
to apply the prediction function (20) to obtain a 
digital elevation data for a certain point inside 
the considered square. 

(g) Compute the predicted variance ~r2from: 
2-- ~ ~ 2 \If - ---.L: v,' , with vi = Z i - Z ~ 

'M '-=, 
(24) 

By choosing adequately the side of grid squares 
one can establish a concordance between <Jf and <iZ 
of stereotriangulated points. 

A computer program SURFACE was elaborated accor­
ding with the above predicted DEM. The output of 
this program provides: 

(1) The residuals Vj and RMS in equation (18). 

(2) The digital elevation data for all points 
which defined the grid squares in eq. (19). 

(3) The predicted polynomial function FZ = Z from 
eq. (20) for all points which generate a new den­
sified grid. 

(4) The residuals ve: and RMS (24) for control and 
stereotriangulated points. 

EXPERIMENTAL PROCEDURE 

To obtain information on characteristic surface 
roughnesses in a forest area after a clear cut 
and to monitor the dynamical erosion process, a 
close-range photogrammetric technique was used. 

The metric camera used in this project was a 
Zeiss UMK-1318. Monochrome film Kodak was used 
with natural light. The lighting was chosen so as 
to accentuate the surface without to cause loss 
of details in the shadowed areas. 

For the photogrammetric measurements, control was 
provided by twelve points evenly distributed in 
the research zone. Their positions were determined 
by geodetic method, using microtriangulation and 
microtrilateration methods. 

Five convergent photographs of a targetted test 
range with 120 maximum angle of convergence were 
observed on a monocomparator and the observations 
were processed through a bundle adjustment combi­
ned with geodetic distance observations by DIS­
TANCE program. With the coordinates of triangula­
ted points, digital elevation data were initially 
generated on a grid pattern with a grid spacing 
of: Imxlm; 0.5mxO.5m; 0.25mxO.25m and O.lmxO.lm. 
These data sets constituted the basic data sets 
of this study. Based on these data, a perspective 
view of the predicted surface was generated (Fig. 
1 and Fig. 2). 

Digital elevation data represent the situation in 
the autumn 1991. To evaluate the change in eleva­
tion and the volume of soil moved, a cycle of two 
measurements per year are planned. 

CONCLUSIONS 

The objective of this investigation was to deter­
mine the feasibility of using analytical photo­
grammetric methods and a DEM to monitoring dyna­
mical erosion process. 

Fig.l Three-dimensional representation of forestry area - right view 
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Fig.2 Three-dimensional representation of forestry area - left view 

The analytical photogrammetric surface modeling 
offers an economical alternative to the classical 
field survey. Among the advantages, the following 
may be underlined: 

All points on the surface are determined with 
essentially the same accuracy. 

The coordinates of other points, especially of 
control points, external to the surface conside­
red, can readily be determined to the same accu­
racy. 

Based on the combined bundle adjustment with 
geodetic distance measurements, an exact solu­
tion for the orientation is derived, which leads 
to a simultaneous least squares adjustment of pro 
jective parameters and of ground point coordi­
nates. 

Concerning the Digital Elevation Model, the 
results obtained with different sets of data 
through the program SURFACE, atest that the poly­
nomial function fami11y with twelve parameters, 
predicts a realistic and accurate topographic 
surface. 

The results of the triangulation adjustment and 
of DEH for the first epoch of photogrammetric 
measurement (autumn 1991) corroborated the find­
ings of the feasibility study. These results, 
along with an account of the modeling analysis 
procedure adopted, are summarized in Barba1ata & 
Lebel (1991). 
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