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ABSTRACT 

Affine transformation plays a minor role in pho­
togrammetry. However, this transformation shows 
great effectiveness in the cases where projective 
transformation is very weak. This paper presents a 
general orientation theory of two-dimensional 
affine images and c1arifies characteristics of the 
model construction and the one-to-one correspon­
dence between the model and object spaces. Next, 
a general free network theory for affine images is 
constructed with twelve linearly independent vec­
tors. Practical characteristics of the proposed the­
ories are discussed through tests with simulated ex­
amples. 

INTRODUCTION 

Affine imageries do not exist in reality. For this 
reason the orientation theory of affine images has 
probably not been derived until now. However, 
this orientation theory is of great practical use in 
many photogrammetric fields such as precise 
three-dimensional measurement of small objects 
using a conventional comparator and the analysis 
of satellite CCD camera imageries. In the latter 
case the conventional orientation approach of pho­
tographs cannot be employed, because the field an­
gle of the CCD camera is very narrow and height 
differences in the photographed terrain are very 
small for the flying height of the satellite. There­
fore, this paper derives a general orientation the­
ory of two-dimensional affine images and clarifies 
the geometrical properties of the relative and abso-

lute orientation. Then, a general free network the­
ory for affine images is constructed. The theories 
proposed here are tested with simulated examples 
so as to explore the difficulties when applying them 
to practical cases. 

GENERAL ORIENTATION THEORY OF TWO­
DIMENSIONAL AFFINE IMAGES 

Let a three-dimensional object space (X, Y ,Z) be 
projected into a plane based on affine transforma­
tion(See Figure-l.). The basic equations relating 
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Figure-l : parallel projection of an object space 
into the measured plane of the compa­
rator coordinate system. 

an object point P and its measured image point 
Pc(xc,Yc) are described (Okamoto (1989)) as 

(1) 

in which ai (i=1,. . ,,8) are independent coefficients. 
Geometrically, the eight orientation parameters of 
the affine image are considered to be three rotation 
parameters (m,cp,K) 0 f the image, two translation 
elements (Xoc, Yoc) which indicate two of the three­
dimensional coordinates of the origin of the mea­
sured image coordinate system (xc,Yc) with respect 
to the object space coordinate system (X, Y ,Z), the 

image scale s, and two rotation parameters (a,ß) 
describing the relationship between projected rays 
and the normal to the image plane. The eight ori­
entation parameters of a single affine image can 
thus be provided uniquely if four control points 
are available. 
Next, we will consider the orientation problem of a 
stereopair of two-dimensional affine images (See 
Figure-2.). The basic equations are wriHen down 
as 



XcI = allX + a12 Y + a13Z + a14 
(2) 

for the left image, and in the form 

(3) 

Figure-2 relative and absolute orientation of a 
stereopair of affine images 

for the right one, respectively. The condition that 
Equations 1 and 2 are valid for all object points 
photographed in common on the left and right im­
ages can be formulated as 

all a12 
alS al6 
a21 a22 
a2S a26 

a13 
a17 
a23 
a27 

al4 - XcI 
al8 - Ycl 
a24 - Xc2 = ° (4) 

a28 - Yc2 

which is equivalent to the coplanarity condition of 
corresponding rays. Under the condition of Equa­
tion 4 we can form a three-dimensional space 
(XM,YM,YM) which can be transformed into the 

object space (X, Y ,Z) by a three-dimensional affine 
transformation having 12 independent coefficients, 
i.e., 

XM = BIX + B2 Y + B3Z + B4 
YM = BsX+B6Y+B7Z+ B8 (5) 
ZM = B9X + BIOY + BIIZ + Bl2 

Also, the space (XM, YM,ZM) is equivalent to the 
model space. From the results obtained above we 
can find the following characteristics of the orien­
tation problem of overlapped affine images: 
1) The coplanarity condition of corresponding 

rays can mathematically provide four orienta­
tion parameters among the sixteen ones of the 
stereopair of affine images, and 

2) The one-to-one correspondence relating the 
model and object spaces can be uniquely deter­
mined, if four control points are given in the 
object space. 
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GENERAL FREE NETWORK THEORY FOR 
AFFINE IMAGES 

In the simultaneous determination of both orienta­
tion parameters of overlapped affine images and 
coordinates of object points, the basic equations are 
given in the form of Equation I(Okamoto and 
Akamatu(1991)). These basic equations can be lin­
earized as 

Xc = Xc + X~AI + Y~A2 + Z~A3 + 1·~Ä4 

+ AI~X + A2~ Y + A3~Z 

Yc =)Tc + X~As + Y~At; + Z~A7 + l·~As 

+ As~X + At;~ Y + A7~Z 

(6) 

Setting up Equation 6 for all affine images under 
consideration simultaneously, we have a system of 
linear equations in a matrix form as 

A' ~X = C (7) 

in which 

A : a coefficient matrix of the system of linear 
equations 

~x : a vector of corrections to unknowns 
c : a vector of constants. 

Without object space controls the matrix A is sin­
gular and its rank deficiency is twelve. In the gen­
eral free network theory for affine images we have 
therefore twelve linearly independent vectors satis­
fying the following relationship: 

AG = 0 (8) 

where G is a matrix constructed from the 12 lin­
early independent vectors, i.e., 

(9) 

gI = (Al, ° , ° , ° ,As, ° , ° , ° ,-X, ° , ° ) 
gi = (0 ,Al, ° , ° , ° ,As, 0, ° ,-Y, ° , 0) 

gI = ( ° , ° ,Al, ° , ° , ° ,As, ° ,-Z, ° , ° ) 
g! = ( ° , ° , ° ,Al, ° , ° , ° ,As, 1 , ° , ° ) 
gI = (A2, ° , ° , ° ,At;, ° , ° , ° , ° , -X, ° ) 
g6 =(O,Az,O,O,O,At;,O,O,O,-Y,O) 

g1 = ( ° , ° ,Az, ° , ° , ° ,At;, ° , ° ,-Z, ° ) 
g~ = ( ° , ° , ° ,A2, ° , ° , ° ,At;, ° , 1 , ° ) 
g~ = (Ä3, ° , ° , ° ,A7, ° , ° , ° , ° , ° ,-X) 
gIo = ( ° ,Ä3, ° , ° , ° ,A7, ° , ° , ° , ° ,-Y) 
gE = ( ° , ° ,A3, ° , ° , ° ,A7, ° , ° , ° ,-Z) 
gI2 = ( ° , ° , ° ,Ä3, ° , ° , ° ,A7, ° , ° , 1 ) 

(10) 

These 12 vectors can easily be found by linearizing 
the three-dimensional affine transformation (Equa­
tion 5) and expressed in the form of Equation 10. 
Seven of the twelve vectors are related to the 
three-dimensional similarity transformation and 
the last five vectors pertain to a model deforma­
tion. 



If measured image coordinates (xc,yc) have ran­
dom errors, the system of linearized observation 
equations can be described as 

y = A~x - L (11) 

where y is a vector of residuals to the observa­
tions. The free network adjustment is then carried 
out in a following manner (Ebner (1974)) 

yTpy -;. min 

under the condition = 0 (12) 

where P is a weight matrix of the observations. 

TESTS WITH SIMULATION MODELS 

ULTRA-PRECISE THREE-DIMENSIONAL 
MEASUREMENT OF SMALL OBJECTS USING 
A CONVENTIONAL COMPARATOR 

The derived orientation theory of overlapped 
affine images was tested with simulated examples. 
For the construction of simulation models a stere­
opair of affine image planes of small objects mea­
sured by a comparator were assumed to be em­
ployed and the image coordinates of 25 ob~ect 
points were calculated by means of the convenhon-

lcft image 

right image . 

small object 

F igue-3 a stereopair of affine images employed 
for the ultra-precise measurement of 
small objects using a comparator 

Figure-4 arrangement of check and control points 
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al three-dimensional coordinate transformation 
equations under the following condi hons (See 
Figures-3 and 4.): 

size of small objects: 100 x 100 x 50 mm , 

10 x 10 x 0.15 mm 
convergent angles : Odeg., 20deg. 
number of control points: 5 
number of check points: 20 

Then, the perturbed image coordinates were pro­
vided in which the perturbation consisted of ran­
dom normal deviates having standard deviations of 
5 micrometers for the first object and 1 microme­
ter for the second very small and thin ob­
j ect,respecti v el y . 
The obtained results regarding the average internal 
error at the 20 check points and the average exter­
nal error are shown in Table-1. We can find in 
Table-1 the following characteristics of the orien­
tation problem of overlapped affine images: 
1) Ultra-precise three-dimensional measurement 

of small objects can really be performed by a 
conventional comparator using the proposed 
orientation theory, and 

2) The second object is very small and thin. 
However, the obtained external accuracy is 
rather high. This means that affine transfor­
mation can be effectively applied to the analy­
sis of satellite CCD camera imageries, because 
the satellite CCD camera has a very narrow 
field angle and because height differences in 
the photographed terrains are small in compar­
ison with the flying height of the platform. 

~ small object 
very small and 
thin object 

average 
7.4 !lm 1.4 !lm internal eITor 

average 
11.2 !lm 1.9 !lm external eITor 

Table-1: the measurment results of smsll objects 
using a conventional comparator 

FREE NETWORK ADJUSTMENT 

In order to explore the practical characteristics of 
the proposed free network theory for affine im­
ages, two simulation models were constructed un­
der the following conditions (See Figures-5 and 
6.): 

Simulation Model I 
size of object: 100 x 100 x 50 mm 

number of overlapped affine images: 2 
convergent angles: -30deg., +30deg. 
standard error of measured image 

coordinates: 5micrometers 
number of control points: 5 
number of check points: 20 



Figue-5 

right affine image 

small object 

a stereopair of affine images employed 
for the free network adjustment 

first affine image 

Figue-6 

small object 

three overlapped affine images employed 
for the free network adjustment 

Simulation Model II 
size of object: 100 x 100 x 50 mm 
number of overlapped affine images: 3 
convergent angles: -30deg., Odeg., +30deg. 
standard error of measured image 

coordinates: 5micrometers 
number of control points: 5 
nu mb er of check points: 20 

The free network theory is essentially a linear the­
ory. Thus, we must have fairly good approxima­
tions for unknowns, because the basic equations 
(Equation 1) are non-linear with respect to the ori­
entation parameters and object space coordinates. 
Further, the free network solution needs an itera­
tive approach in order to obtain a very high exter­
nal accuracy. This comes from the fact that the 
solutions obtained in the free network adjustment 
are not unbiased estimates of both the orientation 
parameters at the exposure instants and the real ob­
ject space coordinates but depend mathematically 
on the given approximations. In this method, the 
first approximations were calculated by contami­
nating the control point coordinates with random 
errors having a standard deviation of 15 microme-
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ters. Then, the iterative calculation of the free 
network adjustment was performed by regarding 
the solutions obtained in the (i-l)th step as the ap­
proximations in the i-th step and replacing only the 
approximations of the control point coordinates by 
the true values. 
The obtained results regarding the standard error 
of uni! weight, the average internal error at the 20 
check points and the average external error are 
shown in Tables-2 and 3. Prom these tables the 
following characteristics may be extracted for the 
free network adjustment of overlapped affine im­
ages: 

1) The geometry of the stereopair of affine im­
ages in Simulation Model I is rather weak. 
Thus, the average intern al and external errors 
of the particular solutions with fixed control 
points are about twice as large as the theoreti-

~ particular free network 
solution solution 

standard error 
of unit wei,ght 5.3 ~m 5.3 ~m 

average 
13.3 ~m 7.7 ~m internal error 

average 
11.2 ~m 9.7~m external error 

Table-2: the obtained results for Simulation 
Modell 

~ particular free network 
solution solution 

standard error 
of unit wei,ght 4.7 ~m 4.7~m 

average 
7.1 ~m 4.1 ~m internal error 

average 
6.2 ~m 5.8 ~m external error 

Table-3: the obtained results for Simulation 
Model II 

cal ones. However, employing three over­
lapped affine images, the obtained average ex­
ternal error of the particular solutions is al­
most identical to the theoretical one. 

2) Applying the free network adjustment, great 
improvements are recognized in the internal 
precision. On the other hand, the improve­
ments in the external precision are 13 percents 
for the weak geometry of the stereopair of 
affine images and only six percents for the 
strong geometry. 

3) The solution sometimes diverged when very 
high weights are given on the free network 
constraints(Equation 12). 



CONCLUDING REMARKS 

In this paper a general orientation theory of two­
dimensional affine imageries has been derived for 
the ultra-precise three-dimensional measurement 
by a conventional comparator and for the analysis 
of satellite CCD camera imageries having a very 
narrow field angle and very small height differ­
ences in the photographed terrains. Also, a general 
free network theory for affine imageries has been 
constructed. Tests with simulated examples clari­
fied that the proposed theories were mathematical­
Iy sound and useful for the analysis of two-dimen­
sional affine imageries. 
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