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An approach tor the modeling ot complex 3D scenes like outdoor street views from a sequence of stereoscopic 
image pairs is presented. Starting with conventional stereoscopic correspondence analysis a 3D model scene 
with 3D surface geometry is generated. Not only the scene geometry but also surface texture is stored within 
the model. The 3D model permits to detect and correct geometric errors by comparison of synthesized images 
with real input images through analysis by synthesis techniques. 3D camera motion can be estimated directly 
from the image sequence to track camera motion and to tuse measurements from different viewpoints through­
out the sequence into a common 3D model scene. From the textured 3D model realistic looking image se­
quences trom arbitrary view points can be synthesized using computer graphics methods. 
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INTROOUCTION 

Conventional stereoscopic image analysis tries to re­
construct a 3D scene from pairs of camera images 
through triangulation of corresponding 20 image 
points while the relative orientation of the cameras to 
each other is known. By triangulation a depth map 
can be constructed where the distance of each corre­
sponding 3D scene point to the camera focal point is 
measured. This approach is sufficient tor simple 
scene geometry without occluded areas but will tail 
when analyzing complex scenes like street views. 

The reconstruction ot complex 3D scenes requires 
that aseries of problems need to be solved, especially 
the problems of 2D correspondence and 3D registra­
tion. To be able to triangulate the scene from a particu­
lar pair of images a calibration of the projection geom­
etry and the relative orientation of the cameras to 
each other is needed. When using a binocular camera 
setup, the calibration can be performed once before 
the measurement and will remain constant through­
out the measurement phase. Measurement of scene 
geometry relative to such a binocular camera system 
can then be obtained through triangulation of corre­
sponding image points. During correspondence anal­
ysis one tries to uniquely identify the projections of a 
scene element onto the camera targets. In a complex 
natural scene parts of the scene may be occluded to 
the camera system so that the camera has to be 
moved throughout the scene. The scene is then ana­
Iyzed from a sequence of image pairs. To register all 
measurements into a common scene coordinate sys­
tem the 3D motion of the camera system must be 
tracked and measurements from multiple view points 
must be integrated to build a 3D model 01 the scene 
[Aloimonos, 1989]. 

The presented approach addresses the problems 
stated above for building a 3D model of a complex 
scene from a sequence of stereoscopic image pairs. 
Fig. 1 displays the structure 01 a 3D scene analysis 
system that automatically extracts 3D shape, motion, 
and surface texture of a 3D scene viewed by a stereo­
scopic camera. Input to the system is a stereoscopic 
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image sequence and the known camera parameters 
of the stereoscopic camera pair. In a first step the 
images are rectified and corresponding points are 
searched in each image pair of the sequence. For 
each image pixel an estimate of image disparity is 
calculated and stored in a disparity map Dk together 
with a confidence measure that describes the quality 
of the estimate in Ck. The local disparity measure­
ments are merged to physical objects du ring scene 
segmentation and the physical object boundaries are 
recorded in a segmentation map Sk. Prior knowledge 
of the observed scene as weil as human interaction 
that guides the segmentation process can be in­
cluded to improve the modeling quality. All measure­
ments of one object are interpolated to smooth object 
surfaces and to fill gaps in the depth map. in the scene 
segmentation and interpolation stage. All information 
obtained so far from image pair analysis are fused in 
a 3D scene model. The disparity map is converted 
into a depth map and a 3D surface description is 
derived trom the depth measurements. The surface 
geometry is represented as a triangular surface mesh 
spanned by control points in space. These control 
points can be shifted to adapt the surface geometry 
throughout the sequence. Not oilly the scene geome­
try but also the scene surface texture is stored within 
the model. It is theretore possible to synthesize realis­
tic looking image sequences (L'k, R'k) from the model 
scene using 3D computer graphics methods [Koch, 
1990]. A 3D motion estimation algorithm is included 
that calculates the motion of the camera and object 
motion throughout the scene and allows to fuse mea­
surements from multiple view points. From the model 
scene predictions of the measurements (D'k, S'k) can 
be calculated togetherwith the synthesized sequence 
(L'k. R'~ and used in a feedback loop to further en­
hance the reliability of the measurements. This feed­
back loop improves the 3D scene analysis based on 
comparison of the synthesized 2D sequence with the 
real image sequence based on the analysis by syn­
thesis principle. 

STEREOSCOPIC IMAGE PAIR ANALYSIS 

The analysis of a stereoscopic image pair is spUt into 
correspondence analysis and scene segmentation. 
The correspondence analysis tries to locally estimate 
image plane correspondences while during scene 
segmentation image areas that belong to physically 
connected regions are identified through similarity 
measures and merged to scene objects. In a prepro­
cessing step the image pair is rectified to give an 
image pair where the camera axes are parallel and 
the cameras are displaced is in horizontal image 
plane coordinates only. This image rectification great­
Iy simplifies correspondence analysis and the search 
space is reduced to parallel horizontal epipolar lines 
E. 

Correspondence analysis 

The correspondence analysis is split in three parts. 
First a candidate for a corresponding point must be 
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identified in one image, then the corresponding candi­
date in the other image is searched along the epipolar 
lines and third the most probable candidate match 
between both images is selected based on a quality 
criteria. This search is repeated for each candidate, 
that is tor each pixel. To select candidates the image 
grey level gradient G is evaluated. The image gradi­
ent is a vectorfield pointing into the direction of chang­
ing image texture like grey level edges. Only areas 
exceeding a minimum image gradient value IGI > 
Gmin can be candidates for correspondence. The 
quality of the candidate can be estimated when com­
paring the gradient direction with the search direction. 
Edges perpendicu lar to the search direction can be 
located best while edges parallel to the search direc­
tion cannot be located at all. This quality measure C1 
can be calculated in Eq. (1). Candidates with Ci = 0 
can not be estimated there candidates with C1 = 1 
have highest confidence in estimation. 

Cl = { G ~E 
IGI 

for IGI < Gmin} 

else 
(1 ) 

The estimation of C1 is carried out for each image 
pixel. Each pixel with a gradient quality measure of 
C1 > 0 will be selected as candidate. For each candi­
date a small measurement window (typically 11*11 
pixel) around the candidate position in one grey level 
image is chosen and the corresponding grey level 
distribution is searched tor in the other image. The 
search space is reduced to a one-dimensional search 
along the epipolar line between minimum and maxi­
mum disparity values derived from the known mini­
mum and maximum scene distance. To select the 
most probable corresponding candidate along the 
search line, the normalized cross correlation (NCC) is 
calculated between the candidates. The most prob­
able candidate pair is the pair with maximum cross 
correlation. The disparity value obtained for this can­
didate pair is recorded in a disparity map. The NCC 
is additionally used to deHne the correspondence 
quality. Selected corresponding pairs with low NCC 
are corresponding points with low confidence. There­
fore a second quality measure C2 in Eq. (2) can be 
defined that reflects the correspondence measure­
ment confidence. Experiments have shown that can­
didates below a minimum threshhold NCCmin (NCC­
min being approximately 0.7) are most oHen false 
matches that should be discarded. The confidence 
quality is therefore defined to be zero below NCCmin 
and NCC elsewhere. 

forNCC < NCCmin} 
else 

(2) 

80th quality measures can be merged to one mea­
sure Ce = C1 . C2 that contains the combined quality 
measure tor each candidate. From the correspon­
dence analysis two candidate maps are created: a 
disparity map contains the most probable disparity 
value for each candidate and a confidence map con-



a) left original image 

c) disparity map ( dark = far from camera, 
light = near to camera) 

b) right original image 

d) confidence map (dark = low confidence, 
light = high confidence) 

Fig.2: Correspondence analysis of image pair "house". 

ta ins the combined quality measure Ce for each can­
didate. Fig. 2 demonstrates the correspondence ana­
lysis for an image pair of the sequence "house". The 
image sequence "house" consists of a s~ries of 90 
views of the house where the house is rotated 4 de­
grees around the vertical axis in each view. The cam­
eras are displaced 15 mm in horizontal direction with 
parallel optical axes and the house is placed approxi­
mately 400 mm from the camera origin. Fig. 2a and 
b show the left and right input image, Fig. 2c the dis­
parity map and Fig. 2d the corresponding confidence 
map. Black regions are regions where no disparity 
could be measured. The measured disparity values 
are between 30 and 50 pixel. It can be seen that some 
regions in the area of the roof have false disparity 
values. This areas correspond to regions with low 
confidence because no surface structure is available 
to uniquely select a candidate. 

Scene segmentation 

The correspondence analysis yields a disparity map 
based on local depth measurement only. These mea­
surements are uncertain and must be merged to re­
gions that describe physical object surfaces. Based 
on similarity measures of scene depth the segmenta-
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tion divides the viewed scene into contiguous sur­
faces and merges all disparity measurements Of one 
object surface. The object boundaries are corrected 
from the grey level image with a contour approxima­
tion by assuming that physical object boundaries 
most offen create grey level edges in the image. 

Once the depth map is segmented into object regions 
all measurements of one region are interpolated by a 
thin plate surface model that calculates the best qua­
dratic surface approximation of the disparity map 
based on the uncertain depth measures. A multi grid 
surface reconstruction algorithm described by [Terzo­
poulos, 1988] was chosen to calculate the interpola­
tion with a finite element approximation. The interpo­
lation fills out gaps in areas where no disparity 
calculation is possible. The process of segmentation 
and model building is shown in Fig. 3 for a pair of the 
image sequence "house". In Fig.3a the segmentation 
of the object "house" is marked grey, the residual 
background is marked white. Black regions are areas 
that cannot be analyzed at all because these areas 
are visible in one camera only. Fig. 3b displays the 
interpolated disparity map of the object house that is 
converted into a depth map for model building.The 
segmentation could be improved if not only the outer 



a) Scene segmentation mask 

c) textured object "house" with trianglllar surface 
mesh sllperimposed 

Fig.3: Scene segmentation and model building. 

boundary of the house but also the inner edges were 
known. By simple human interaction these edges 
could be classified and would greatly improve surface 
modeling. A human interaction module that intro­
duces knowledge about the objects will therefore be 
of great help. 

Modeling of 3D----obiects trom the disparity map 

The interpolated disparity map contains the visible 
scene geometry measured from tlle camera view 
point. When the scene contains occluded surfaces 
then the camera must be moved around the objects 
and the measurements from multiple view points 
must be included. For that purpose the 2D disparity 
map is first converted into a 3D surface description 
that can be modified to include hidden surfaces. The 
disparity map can be transformed into a depth map 
containing absolute scene geometry when the binoc­
ular camera geometry parameters are known. This 
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b) interpolated disparity map (dark = far from camera, 
light = near to camera) 

d) Synthized view of object "house" after integration 
of depth measurements from 6 view points, 
each view rotated 4 degrees 

depth map is sampled and a 3D-surface for each 
contiguous object is constructed by spanning a trian­
gular wireframe in space. The sampies of the depth 
map generate control points in space that are con­
nected through plane triangu !ar patches. The triangu­
lar mesh was chosen because it is capable to approxi­
mate arbitrary surface geometries without 
singularities. On the surface of each triangular patch 
the object surface texture can be stored in a texture 
map from which a naturally looking view of the original 
objects can be synthesized with computer graphics 
methods. In Fig. 3c a synthesized view of the 3D 
object "house" is shown with the triangu lar surface 
mesh superimposed as black lines. The surface ge­
ometry was calculated from the interpolated disparity 
map while the surface texture was taken trom the left 
original image. In Fig. 3d a first result of the informa­
tion fusing stage is shown which will be described 
below. 



IMAGE SEQUENCE PROCESSING 

The tasks performed so far were straight forward ste­
reoscopic image analysis. From the stereoscopic 
image pair a 3D surface approximation was extracted 
from a single camera view point togetherwith a quali­
ty measure of the estimated surface position. When 
complex scenes with occluding objects are to be ana­
Iyzed orwhen the measurement quality of the surface 
geometry has to be improved the camera must be 
moved throughout the scene and the measurements 
from multiple view points have to be integrated into 
the 3D surface model. Therefore it is necessary to 
estimate the 3D motion of the camera and possible 
object motions in the scene from the image sequence 
and to fuse the multiple depth measurements into a 
consistent 3D scene model. 

3D motion estimation using analysis by synthesis 

In this section an algorithm to directly estimate 3D 
scene motion from a monocular image sequence is 
described. For 3D motion estimation the object shape 
is assumed to be known. An initial estimate of the 
scene shape was generated from stereoscopic image 
analysis. When the initial estimate fails this depen­
de ncy may affect the analysis and will sometimes lead 
to estimation errors. As long as the initial shape ap­
proximation is reliable, however, this dependencycan 
be neglected. 

ReQuirements for 3D motion estimation An object 
is defined as a rigid 3D-surface in space that is 
spanned by a set of N control points. A set of six 
motion parameters is associated with each object. 
Object motion is defined as rotation of the object con­
trol points around the object center followed by a 
translation of the object center, measured between 
two successive image frames k and k+ 1. The object 
center G is the me an position vector of all N object 
control points. Each object control point Pj(k) at frame 
k is transformed to its new position Pi(k+ 1) in frame k+ 1 
according to the general motion Eq. (3) between 
frame k and k+ 1. 

image frame k+ 1 

(3) 

. (TTx) translation 
Wlth T = y = T vector 

z 

G = (gx) = f .!J. = component ,and 
G: i=1 N center 

[Ra] = rotation matrix of rotation vector R = (~:) 
Object rotation can be expressed by a rotation vector 
R = (Rx, Ry, Rz) T that describes the successive rota­
tion of the object around the three axes (x, y, z) T 
parallelto the scene coordinate system centered at G. 
From this vector the rotation matrix [RG] is derived 
when the identical matrix [I] is rotated around the 
coordinate axes with Rx first, Ry second and Rz last. 
Because [RG] is derived from the rotation vector R, 
the six parameters of T and R suffice to describe the 
3D object motion. 

The only information available to the analysis system 
is the surface texture projected onto the camera tar­
get throughout the image sequence. From this se­
quence the shape and motion parameters have to be 
derived. Assume a scene with an arbitrarily shaped, 
moving textured object observed by a camera C dur­
ing frames k and k+ 1 as shown in Fig. 4. The object 
moves between frames k (dashed object silhouette) 
and k+ 1 (solid object silhouette) according to the gen­
eral motion equation Eq. (3) with motion parameters 
Rand T. A point onthe object sUrface, called observa­
tion point P(k), holds the surface intensity 11, which is 
projected onto Pi in the image plane at frame k. At 
frame k+1 P(k) has movedto P(k+1)' still holding 11. In 
image frame k+ 1 the surface intensity 11 will now be 
projected at P2, whereas the image intensity at point 
Pi has changed to '2· 

object motion R, T ~ 
12,rT\ ": R : 

\ I \ \ 
\ I I I I 
J I 2 I 

[P(k), 11] /,-.,,1 I _ _ _ - - - - - -

-f----=-=----r--::---~ 

C 

-------------- ,,_ / T 
---" 

---------------------------------------

object at 
frame k 

Fig. 4: Geometry for 3D motion analysis. 
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object at 
frame k+ 1 



The image displacement vector d:: P2 - P1 is ealled 
optieal flow veetor and deseribes the projeetion of the 
observation point displacement P(k+1) - P(k) onto the 
image plane. Whenassuming a lineardependeney of 
the surlace texture between 11 and 12 and a brightness 
eonstancy constraint between frame k and k+ 1 it is 
possible to prediet 12 from 11 and its eorresponding 
image intensity gradients and henee to estimate d 
from the measurable differenee 12 - '1-

(
all aIl)T 

12 -11 = ßx"' ay . d (4) 

12 is measured at position of Pi at frame k+ 1 , where 
11 is taken from image position Pi at frame k. When 
approximating the spatial derivatives as finite differ­
enees the optieal flow veetor d :: (dx, dy)T can be 
predicted trom the image gradients 9 :: (gx, gy)T and 
the temporal image intensity difference L),!p1 :: 12 -11 
between frame k+ 1 and kat P1 in Eq. (5): 

M p1 = g. d = gx' dx + gy . dy 

= gx' (P2x - Pl,J + gy . (P2y - Ply) 
(5) 

In Eq. (5) d is related to intensity differenees. Substi­
tuting the perspective projection of P(k) and P(k+1) for 
Pi and P2 in Eq. (5) yields a direct geometrie to photo­
metrie transform that relates the spatial movement of 
P between frame k and k+ 1 to temporal intensity 
changes in the image sequenee at P1. 

(6) 

As long as the motion between P(k) and P(k+1) ean be 
expressed parametrieally by a linear equatlon and 
assuming that the initial position of P(k) is known, 
P (k+ 1) can be substituted and the Eq. (6) ean be solved 
through evaluation ofthe spatial and temporal intensi­
ty differences at P1' Essentially every surlace point 
ean be taken as an observation point. It is, however, 
useful to restriet the number of observation points to 
those earrying relevant information. Eq. (6) uses 
image intensity as weil as the spatial image gradients. 
Image areas with zero gradient can not be used for 
parameter estimation. A lower bound to the image 
gradient is additionally introdueed to accountfoream­
era measurement noise. It is therefore neeessary to 
impose a minimum gradient threshold when selecting 
observation points as deseribed by [HöHer, 1988]. For 
eaeh observation point its initial 3D position on the 
objeet surfaee, image intensity and spatial image gra­
dients are recorded. Ouring the analysis each obser­
vation point is projected and the intensity difference 
to the real image is evaluated. 

Oireet estimation of 3D object motion With the 
proposed approach, rigid 3D object motion ean be 
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estimated direetlyfrom the image sequence when the 
object shape is known. Assume an observation point 
with a known position P(k) that moves in spaee and is 
observed by a camera C in Fig. 4. The motion is 
governed bythe general motion equation (3). Assum­
ing that rotation between successive images is smalI, 
the rotation matrix [RG] can be linearized to Eq. (7). 

[R'] = R 1 -Rx 
[ 

1 -Rz Ry ] 

-Ry Rx 1 (7) 
rotation matrix [Rd is linearized to [R'] 

when setting sin cI> = cI> and cos cI> = 1 

When substituting [R'] into Eq. (3) a linearized version 
for the general motion equation is found. P(k+1) is 
expressed in explicit form in Eq. (8): 

The parameters to be estimated are the translation T 
and the rotation R. When substituting P(k+1) from Eq. 
(8) in Eq. (6) and linearizing the resulting non linear 
equation through Taylor expansion for Rand Tat R :: 
T:: 0, the linearized equation for a single. observation 
point P(k) is eomputed as 

~lp1 :: f· gx I Pz . T x 

+ f· gy I P z . T y 

- f· ( Pxgx + Pygy ) I pz2 . 

- f· [ Pxgx(Py - Gy} + Pygy{Py - Gy} 

+ Pzgy{Pz - Gz} ] I pl . Rl( 

+ f· [ Pygy{Px - Gx) + Pxgx(Px - Gx} 

+ Pzgx{Pz - Gz} ] I pl . Ry 
- f· [ 9x{Py - Gy} - gy{Px - Gx} ] I Pz . Rz 

(9) 

Conditions for robust motion estimation At least six 
distinetive observation points that lead to six linear 
independent equations are needed to solve forthe six 
motion parameters Rand T.ln real imaging situations 
the measurements of the spatial and temporal deriva­
tives are noisy and some of the observation points 
selected may be linear dependent of each other. To 
eope with those conditions an over constrained set of 
equations is established and a linear regression is 
carried out using least squares fit. All observation 
points of one object are evaluated. It is important to 
note that we do not measure optical flow locally and 
then try to combine the flow field. Instead all observa­
tion points of a rigid surface are used to solve for R 
and T. To aecountforthe linearizing, the estimation is 
iterated. The position P of each observation point is 
initially determined by object shape and position. An 



estimate of the parameters Rand T is calculated and 
the observation point is moved according to those 
parameters. The estimation is repeated with the new 
starting position of P until the parameter changes of 
T and R converge to zero. 

To improve estimation stability, dependencies be­
tween rotation and translation parameters were can­
celled out through the introduction of a center of rota­
tion G. The rotation of an object around an arbitrary 
rotation center can be separated into a rotation of the 
object around the object's center of gravity and an 
additional translation of the objecl. Such a decompo­
sition leads to an independent estimation of Rand T 
and improves convergence of the solution. 

The system should be robust against noisy measure­
ments or measurements wh ich are erroneous due to 
invalid model assumptions. Therefore the mean tem­
poral intensity is computed and observation points 
with high intensity errors are excluded from the re­
gression in a modified least squares fit. The measure­
ment certainty of each parameter can be estimated 
through evaluation of the error covariance matrix of 
the regression [Hötter, 1988]. When a parameter has 
an uncertain estimate it can be excluded from the 
regression to ensure a stable estimate forthe remain­
ing parameters. The analysis was calculated trom a 
monocular image sequence only. It has been tested 
successtully on a variety of tasks for object and cam­
era motion tracking [Kappei, 1988],[Liedtke, 1990], 
[Welz, 1990]. When including the stereoscopic se­
quence information the quality of the analysis is ex­
pected to improve further. 

Integration of multiple depth maps into a common 3D 
scene model 

For each image pair of the sequence a depth map Dk 
can be calculated by stereoscopic analysis together 
with its associated confidence map Ck. The 3D scene 
model contains the approximated scene geometry 
that can be moved according to the camera and scene 
motion. It is now possible to fuse the deptb measure­
ments from multiple view points into the 3D scene 
model to improve estimation quality. The confidence 
value C is converted into the weight S that can easily 
be accumulated throughout the sequence. Each con­
trol point of the scene objects holds not only its posi­
tion P old in space but also its corresponding confi­
dence weight Sold. When a new measurement 
becomes available, the scene motion is compensated 
and the new depth estimate P naw with corresponding 
confidence weight Snaw is integrated by weighted ac­
cumulation. Sfusa represents the accumulated quality 
measure and Pfusa the new control point position. 

and 

with S=~ 
l-C 

P 
_ Po1d ' Sold + P new • Snew 

Eu -
se Sold + Snew 

(10) 

The information fusing process described above can 
only be applied to an existing surface. When new 
objects and prior unseen object surfaces appear, the 
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surface mesh must be extended from the new depth 
map. Once the surface is buHt, the fusing process can 
continue. 

First results of the sequence analysis are shown in 
Fig. 3d with the sequence "house". The house was 
rotated on a turn table and 90 stereoscopic views of 
the house trom all directions, each view displaced by 
4 degree rotation, were taken. Starting with the 3D 
object shown in Fig. 3c, the 3D motion and rotation of 
the house was estimated successfully. At present the 
sequence analysis was tested with objects generated 
from a single depth map only. The object part visible 
from from one camera position was generated and 
this object part was tracked throughout the sequence, 
integrating the depth measurements trom the differ­
ent view points. The resulting object surface after 
integration trom 6 different view points (0, 4, 8, 12, 16, 
and 20 degree rotation) is shown in Fig. 3d. The object 
is rotated to a side view to show the still existing shape 
deviations. 

We are currently working to improve the motion esti­
mation by fully exploiting the stereoscopic sequence 
information and to enhance the integration process. 
It is necessary that the 3D object surfaces are gener­
ated not only from a single depth map but incremen­
tally when new surfaces appear. Additional quality 
measures can be thought of that govern the global 
surface shape and allow to introduce scene specific 
knowledge. 
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