
ON THE REPRESENTATION OF CLOSE-RANGE NETWORK DESIGN 

KNOWLEDGE 

Scott Mason and Veton Kepuska 

Institute for Geodesy and Photogrammetry 
Swiss FederaI Institute of Technology 

8093 Zürich, Switzerland 
email: mason@p.igp.ethz.ch 

Commission V 

ABSTRACT: 

Achieving a satisfactory network design is a prereqUlslte to the realisation of high-precision photogrammetric 
measurement in industrial applications. Networks are in practice designed by a simulation approach wherein the 
expertise of the photogrammetrist is relied upon to overcome the complexity of the task. At the Institute of Geodesy and 
Photogrammetry of the Swiss Federal Institute of Technology, a prototype expert system "CONSENS" is being 
developed with the aim of testing the suitability of applying conventional AI technology to network design. Two major 
steps in building an expert system are to conceptualize and formalize the acquired knowledge. In this latter step, 
knowledge is mapped into formal knowledge-engineering representations. Considerations on conceptualizing and 
formalizing network design knowledge are described in this paper. Examples from the diagnosis of networks illustrate 
the appropriateness of rules and frames in the representation of network design knowledge. 
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1 INTRODUCTION 

The mensuration potential of optical triangulation tech­
niques is directly linked to the quality of the triangulation 
network employed. Careful attention, therefore, must ob­
viously be paid to the design of such networks. The most 
practical approach to elose-range photogrammetric net­
work design involves a design-by-simulation strategy, an 
approach which relies on expertise in order to resolve the 
many interrelated and often competing considerations 
before a satisfactory design is reached. 

A goal of the project Design and Analysis o[ Spatial Im­
age Sequences at the Institute of Geodesy and Photo­
grammetry, ETH-Zürich, is to examine the feasibility of 
applying knowledge-based expert system (ES) technolo­
gy to the task of photogrammetric network design. Be­
cause it is not possible to "prepare meaningful 
knowledge representation specifications for a knowl­
edge-based system application in advance" (Walters and 
Nielsen, 1988) the methodology being employed to reach 
this goal entails development of the ES-based network 
design system prototype CONSENS (CONfiguration of 
SENSor networks). 

CONSENS is comprised of three basic components - an 
expert system, a CAD package, and photogrammetric 
data reduction (bundle adjustment) software (Mason et 
al, 1991). The ES assumes the decision-making role of 
the human expert in network design. The CAD compo­
nent provides functionality for representing spatial data 
(Le. surface model of the object to be measured and it's 
workspace, and the camera stations of the network) and 
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for performing geometric operations (e.g. point visibility 
checking and incidence angle computations) which con­
tribute to the realism of design-by-simulation. The exper­
tise of CONSENS is presently restricted to the design of 
networks for the measurement of simple objects, such as 
antennae, without workspace restrictions. As ESs should 
be applied to narrowly-defined problem domains (Wal­
ters and Nielsen, 1988), development of CONSENS is 
focused on automating the network design function with­
in the context of a measurement robot (see Mason and 
Kepuska, 1992). 

The objective of this paper is to present a number of con­
siderations pertinent to the representation of network de­
sign knowledge, as identified from experiences in 
building CONSENS. As outlined in Section 2, the deci­
sions on how to represent knowledge in an ES, Le. 
knowledge formalization, are preceded by a step of con­
ceptualisation in which the key attributes of a domain are 
made explicit. In Section 3, three different conceptualisa­
tions of the network design task are presented. These 
lead to suggestions on the reasoning strategies appropri­
ate to the generic problem-solving processes involved in 
this task. Finally, Section 4 reviews the usefulness of two 
standard knowledge representations - rules and frames, 
in representing the heuristic and structural knowledge in 
network design. Examples are taken from network diag­
nosis. 

The ES prototyping process is iterative, entailing refine­
ments, re-design and reformulation of the prototype as 
the amount and quality of acquired knowledge broadens 



and the understanding of the task improves. Tbe consid­
erations in this paper should be viewed in this light. 

2 ON BUILDING AN EXPERT SYSTEM 

Building an ES is a complex, ill-structured, and inherent­
ly experimental activity: "there is linIe chance every­
thing can be figured out beforehand" (Buchanan et al, 
1983). Nevertheless, as a guide, this process can be di­
vided into 5 steps, namely problem identification, con­
ceptualization, formalization, implementation and 
testing, as shown in Figure 1. Tbe identification step en­
tails selecting a suitable task for ES development, defin­
ing the related problem domain, establishing project 
goals, and characterizing the important stages of the task. 
In defining the application domain for CONSENS to be 
in support of a measurement robot, this step has already 
been addressed. In conceptualization, the key attributes 
of the task and domain are made explicit. To this end, the 
knowledge employed by experts in reaching solutions in 
the problem domain may be transcribed into flow charts, 
diagrams, lists etc., which serve to expose the strategies, 
relations and information flow. Formalization of knowl­
edge constitutes a mapping of. the key concepts, sub­
problems and information-flow characteristics isolated 
during the conceptualisation stage into more formal, 
knowledge-engineering representations. Tbe output of 
this step is a partial specification for building the ES. Im-

··11· .. • .. ••• re[ormu/ations •·· .. • .. · .. ··1 

----...:...--~ .......... reformulations ............. ~ 

--IaIII ... -.. ·"········· .. re-designs •· .. ·············1 

----'----........ :::::~:::::::.~~~~:=.~:~ ... ~::::::~J 
Figure 1 Stages in the building of an expert system (af­

ter Buchanan et al, 1983). 

plementation involves mapping the formalized knowl­
edge into the representations supported by the selected 
ES development too1. Tbe last step, testing, involves 
evaluating the performance of the ES, e.g. against some 
case studies for which solutions exist. With this test step, 
feedback loops (dashed lines in Figure 1) in the form of 
refinement of the ES, redesign of the knowledge repre­
sentations, or reformulation of the task conceptualiza­
tion, indicate iterative revision ofthe ES (Buchanan et al, 
1983; Dym, 1987). 
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3 ON CONCEPTUALISING CLOSE-RANGE 
NETWORK DESIGN 

In coarse terms, elose-range network design is the proc­
ess by which the goal of precise, reliable and economic 
object measurement is achieved through configuration of 
a suitable photogrammetric triangulation network. As 
shown in Figure 2, this process can be conceptualised in 
(at least) three different ways: (i) using the network de­
sign elassification scheme introduced by Grafarend 
(1974); (ii) in terms of the design-by-simulation strategy 
employed by design experts; and (Hi) in terms of generic 
problem-solving processes. Each conceptualisation as­
sists in understanding the nature of the task. 

task-based: 
-ZOD 

• precision 
• reliability 
• economy 

design-by­
simulation 
strategy 

generic 
problem­
solving 

processes 

Figure 2 Network design can be conceptualised in terms 
of tasks, solution strategy or generic problem 
solving processes. 

3.1 Grafarend's Classification Scheme 

According to Grafarend's (1974) elassification scheme, 
general network design requires solving four major tasks, 
commonly known as zero- (ZOD), first- (FOD), second­
(SOD), and third-order (TOD) design. In relation to 
elose-range photogrammetric applications, these tasks 
can be defined as: 

ZOD: defining a datum for the measured object 
points; 

FOD: configuring an optimal imaging geometry; 

SOD: adopting a suitable measurement precision for 
the image coordinates; and 

TOD: network densification, although largely irrele­
vant to the vast majority of elose-range net­
works (Shortis and Hall, 1989). 

Many considerations pertaining to ZOD, FOD and SOD 
for photogrammetric networks can be found in the litera­
ture (e.g. Hottier, 1976; Fraser, 1984; Grün, 1985; Shor­
tis and Hall, 1989; Fraser, 1992). Because of the 
dependencies between each of these tasks (e.g. ZOD in­
volves the choice of an optimal datum given the network 
design and the precision of the observations (Fraser, 



1984», this elassification scheme does not specify how 
to proceed in designing a network. 

3.2 Design-by-Simulation Strategy 

The design-by-simulation strategy (see Figure 3) pro­
vides a more eoncrete conceptualisation of how human 
experts solve the network design problem. The following 
eharacteristics are worthy of note: 

Initial design: 
approximate imaging 
geometry and ZOD 

No 

Design evaluation: compute variance­

covariance matrix (Qxx) of object points 

No 

Yes No 

Figure 3 A flow-diagram representation of network de­
sign-by-simulation (after Fraser, 1984). 

.. The dataflow in this strategy is sequential and ad­
dresses the three design tasks - ZOO, FOD and 
SOD, in an ordered (as opposed to simultaneous) 
fashion. In knowledge-engineering terms, this da­
taflow constitutes control knowledge and is pro­
cedural in form. 

(0 The simulation strategy is heuristic in nature, hav­
ing been developed out of the experiences of ex­
perts. The complexity of the task is reduced by 
initially configuring a first approximation to a 
suitable imaging geometry. Should this eonfigura­
tion fail to meet the criteria, FOD or SOD meas­
ures are employed to iteratively refine the 
network, or indeed aredesign may be attempted 
(Fraser, 1984). 

Simulation is the most practical method of de­
signing elose-range photogrammetric networks; 
analytical (direct) design methods have yet to be 
proven practical (Fraser, 1987). 

(0 Successful application of this strategy requires 
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expert decision-making at the individual step lev­
el, as suggested by Fraser (1984), " ... faetors such 
as previous experience and intuition will play a 
central role in network optimization". Heuristics 
for network diagnosis, in partieular with respect 
to the step "criteria satisfied?", are exemplified in 
Section 3.4 below. 

3.3 Generic Problem Solving Processes in Network 
Design 

The design-by-simulation strategy can be also eonceptu­
alised in terms of generic problem-solving processes. In 
Figure 4, the steps of the design-by-simulation strategy 
have been replaced by a design process, an algorithmic 
step involving the computation of network performance 
measures (e.g. by bundle adjustment), the identification 
of network faults through diagnosis, and a prescribing 
process entailing the design of eorrections to a network 
to overcome these faults. 

measurement 
criteria 

t 
Design 

(initial design) 

J 
Algorithm 

(compute performance 
measures) 

Prescribe 
(FODandSOD 

corrections) 

t 
Diagnosis 

(evaluate design and 
identify faults) 

.J satisfactory 
network design 

Figure 4 Conceptualizing network design in terms of ge­
nerie problem-solving processes. 

.. Design is the development of configurations of 
objects, entities or items based on set of problem 
constraints. Design systems often use synthesis, 
to generate partial solutions, and simulation, to 
verify or test these solutions (Waterman, 1986). 
This latter funetion entails either diagnosis of de­
sign faults or critical appraisal of design quality 
(Oxman and Gero, 1987). 

.. The computation of network performance meas­
ures (e.g. the precision and reliability of object 
point determination) is largely based on procedur­
al knowledge in the form of algorithms. For in­
stance, the self-calibrating bundle adjustment is 
based on formal mathematical and statistical 
models. Knowledge in procedural form is best im­
plemented (as is already the case) in program­
ming languages such as C or Fortran. 

Diagnosis systems infer faults in a systems (e.g. 
photogrammetric network) functioning from ob-



servations. Typically they relate observed hehav­
ioural irregularities with underlying causes, using 
one of two possible techniques. The first method 
essentially employs a table of associations be­
tween behaviours and faults (generally heuristic 
knowledge). The second method combines 
knowledge of system design with knowledge of 
potential flaws in design, implementation, or 
components to generate candidate malfunction 
consistent with the observations (model-based 
reasoning) (Hayes-Roth et al, 1983). 

The prescribing process, in the context of network 
design, is a form of design: a previously designed 
configuration is corrected to overcome diagnosed 
faults. 

This conceptualisation is useful insofar as it provides a 
means by which the experience gained in the building of 
other expert systems can be applied to the current prob­
lem. To this end, reasoning strategies for each step in the 
design of networks by simulation can be inferred from 
the strategies employed for the related generic problem­
solving processes. With reference to Table 1: 

The large solution space common to complex de­
sign problems is often reduced by experts by (of­
ten heuristically) breaking it down into sub-goals, 
these heing related to the attributes of the design 
in it's final, desired state. This acts to reduce the 
search space to a manageable size. (The design­
by-simulation strategy presented in Figure 3 is an 
example of this.) Consequently, in rule-based 
ESs, search can be limited by using a goal-direct­
ed, backward-chaining reasoning strategy (Dym, 
1985; Oxman and Gero. 1987). 

The structure of the search space for diagnostic 
problems is most often the reverse of that for de­
sign. The goals - identified faults - are unknown 
and must be inferred from the observational data 
available e.g. from an evaluation of a network de­
sign, in this case. To this end, a data-driven, for­
ward chaining reasoning strategy is most 
appropriate (Oxman and Gero, 1987). 

Network design Generic problem- Reasoning 
task solving processes strategy 

initial design design BWD chaining 

performance algorithm procedural 
measures 

design diagnosis diagnosis FWD chaining 

FOD,SOD prescribing BWD chaining 
corrections 

Table 1: Reasoning strategies for network design 

The prescribing of corrections to a design em­
ploys the same reasoning strategy as for design. 
To this end, design goals are set with respect to 
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the diagnosed faults. 

The use of forward chaining in the diagnosis of network 
designs is exemplified in Section 4.2 below. 

3.4 Example: ConceptuaIizing Diagnosis in Network 
Design 

The decision-making processes within each of the indi­
vidual steps (initial design, etc.) of the design-by-simula­
tion strategy are not made explicit by Figure 3. In this 
section, a small portion of network diagnostic knowl­
edge is identified and provisionally conceptualized. This 
example serves to: (i) illustrate the role and importance 
of heuristic knowledge in network design; and (H) to pro­
vide the basis for investigating appropriate representa­
tions for network design knowledge (the topic of Section 
4). 

The objective of diagnosis in network design is to identi­
fy the faults which cause a network to fail set precision, 
reliability and economy criteria. As depicted in Figure 5, 

Task: 

network 
diagnosis 

Figure 5 Input/output model of the network diagnosis 
task. 

input to this task consists of evaluation data (e.g. the var­
iance-covariance matrix for the object point coordinates 
obtained from bundle adjustment) and the measurement 
criteria (e.g. rms precision of point determination to he 
reached). As described below, expert knowledge in the 
form of heuristics is used to identify faults from these in­
puts. 

Heuristics can be defined as the rules-of-thumb and em­
pirical associations that, gained through experience, ena­
ble experts to make educated guesses when necessary to 
recognise promising approaches to problems (Waterman, 
1986). From the literature and interviewing network de­
sign experts, a numher of heuristics with respect to the 
first step in network diagnosis - "criteria satisfied" (see 
Figure 3) - can he identified: 

As precision measures are not of much value if 
the reliability of a network is unacceptable (Grün, 
1980), each design should be tested for reliability 
before precision. 

Assuming that the number of non-parallel rays in­
tersecting at a point can be used as a rough meas­
ure of point determination reliability, a first test of 
reliability is that each target point should he inter­
sected by at least 4 non-parallel rays (Grün, 
1980). 



• Before diagnosing a network using performance 
data based on the variance-covariance matrix 
(Qxx) of the determined target coordinates as ob­
tained from a bundle adjustment, a pre-diagnosis 
step can be performed. Pre-diagnosis uses the 
number of non-parallel rays and statistics on the 
convergence angle (e.g. mean and range) between 
the rays intersecting at each object point as evalu­
ation data and thereby can provide a quick and 
simple means of detecting weaknesses in the im­
aging geometry of the network. 

The application of these heuristics in network diagnosis 
can be conceptualised in terms of a decision tree, a few 
branches of which are shown in Figure 6.1t is dear to see 
that, with each new decision in the tree, the diagnosis 
search space becomes broader. 

Fact: network 
satisfies basic 

reliability criteria 

Fact: imaging 
geometry appears 

to be strong 

Fact: network 
satisfies precision 

criteria 

Fact: some points 
have insufficient 

rays 

Fact: imaging 
geometry weak at 

some points 

Fact: some points 
faU precision 

criteria 

Figure 6 Partial decision tree for network diagnosis. 
Dashed lines indicate other branches in this 
tree. 

4 ON REPRESENTING NETWORK DESIGN 
KNOWLEDGE 

Once the knowledge about a task has been conceptual­
ised, the next step (see Figure 1) in building an ES is to 
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formalize this knowledge into knowledge engineering 
representations. This step is illustrated here by an exam­
pIe formalization of the diagnostic task described above. 
The application of the two most widely-used knowledge 
representations are considered. Firstly, frames are useful 
for representing hierarchical knowledge and secondly, 
rufes are appropriate for representing the heuristic 
knowledge in network design. The goal here is not to re­
view the features of these representations as such, but 
rather to demonstrate how the representations can be ap­
plied to the knowledge in this domain. 

4.1 Example: Representing Hierarchical Knowledge 
in Network Diagnosis with Frames 

A frame is essentially a structure for holding various 
types of knowledge. Conceptually, a frame represents an 
item (e.g. a physical object), an idea or hypothesis. The 
contents of the frame, called slots, describe that item in 
some way (e.g. its characteristics, properties and/or be­
haviour). The chief advantage of having a frame-based 
representation is that it provides a means for categorizing 
and structuring diverse data-types in the knowledge base, 
and a framework whereby not only the data, but also the 
structure of the data, can be reasoned with (Walters and 
Nielsen, 1988). 

The elements of each photogrammetric network can be 
categorised into four different dasses - camera stations, 
images (e.g. photographs), object target points and their 
observations, i.e. image points measured in the images. 
The physical relationships between instances of these 
dasses lend themselves naturally to the hierarchical 
structuring shown in Figure 7. For instance, the image 

I Slit I 
)XPTeii~at 

lmagej 

measure on 
/ I 

~ 
observation of 

I \ 

Figure 7 Hierarchical structuring of configuration data in 
network design. 

point k is an observation of the object point I and was 
measured in the image j. In turn, image j was exposed at 
station i. Each network design will be comprised of mul­
tiple stations at which, depending on the SOD, at least 
one image will be exposed. Moreover, each object point 
will be observed in multiple images; exactly in which is, 
of course, an important issue that needs to be addressed 
during network design. In addition to camera format, 
such factors as point visibility and ray incidence angles 
can cause image point "loss" and if not accounted for, 
may detrimentally affect the realism of the design simu­
lation * (Shortis and Hall, 1989). In any case, all relation-



ships between these network elements can be represented 
through the definition of dass->frame and frame->sub­
frame relations. 

Firstly, dasses (denoted by 0) are defined for each ofthe 
four categories of elements. Associated with each dass is 
a set of slots which described it's characteristics. Impor­
tantly, each time an instance (denoted by A) of a dass is 
created, that instance (frame) inherits the dass slots. In 
Figure 8a, as a simple example, the dass OPT (for object 
points) possesses the slots X, Y, and Z. Initially, frames 
Ptl and Ptl+l are not attached to a dass. By making Ptl 

and Ptl+ 1 instances of OPT they inherit the slots of the 
dass (Figure 8b). Of course, the values of these slots can 
be uniquely set for each individual frame. 

OOPT 
(X, Y, Z) 

(a) 

OOPT 
(X, Y,Z) 

/\ 
Ä Ptl 

X=l 
Y=2 
Z=3 

Ä Ptl+l 

X=4 
Y=5 
Z=6 

(b) 
Figure 8 Property inheritance with frames. 

Secondly, frame-subframe relations are defined to repre­
sent the relations between network elements belonging to 
different categories. In such cases, the subframe is recog­
nised as a component of the frame, but does not inherit 
it's slots. For example, in Figure 9 image point Imgptk is 
an instance of the dass IMGPT (for image points) and a 
sub-frame of object point Ptb representing the status of 
the image point as an observation of the object point. 

OIMGPT OOPT 

(x,y) ~(X,Y,Z) 

/ APt, 

Almgpt~1;~ 
x=O.1 
y= 0.2 

Figure 9 Frame-subframe relations. 

The combination of both types of frame relationships 
permits the network structure (Figure 7) to be accurately 
represented by frames, as illustrated in Figure 10. Note 
here that it is necessary that the ES only have permanent 
knowledge about the dasses and possible frame->sub­
frame relations. As a result the same ES can design any 
network simply by dynamically creating the necessary 
network elements and their relations in the frame repre­
sentation as each design proceeds. Permitting this flexi-

*This point is one of the major reasons for in­
duding a CAD component in CONSENS. 
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bility is pattern matching, which allows the structure of a 
frame representation to be reasoned with in rules. In pat­
tern matching, all instances of a dass, or components 
(sub-frames) of a frame, are referenced in the condition 
or action of a rule. As is exemplified in the next section, 
this is very useful in a task such as network design where 
not only the number of elements and relations varies 
from design to design, but many of the reasoning steps 
need to be applied over dasses or groups of elements. 

o STATION 0 IMAGE OIPT OOPT 

ÄStni 

~t 

Figure 10 Frame-representation of network data. Dashed 
lines indicate dass membership; fulllines in­
dicate object-sub-object relationships. 

4.2 Example: Represcnting Heuristic Design 
Knowledge with Rules 

A rule is achunk of knowledge that represents a situation 
and its immediate consequences. Rules are expressed as 
condition-action, (i.e. IF-THEN) statements. IF a11 the 
conditions of the rule are true, THEN the rule's hypothe­
sis is confirmed and any actions associated with the rule 
are triggered by the ES's inference engine. When at least 
one of the conditions is not true, the hypothesis is false. 

Rules are often appropriate for the representation of heu­
ristic knowledge. Consider, for example, the network di­
agnosis heuristics discussed in Section 3.4. In 
formalizing the decision tree (in Figure 6) derived from 
these heuristics, the rules listed below might be written. 
Note that Rule 1 only provides for control by directing 
the ES to diagnosis as soon as new performance meas­
ures for the network have been computed. 

Rule 1: 
IF 
TIIEN 

Rule2: 
IF 

THEN 

RuIe3: 
IF 

TIIEN 
AND 

new perfonnance measures have been computed 
starediagnosis 

the hypothesis start_diagnosis is TRUB & 
IOP11>.NUffi_rays >= 4 
alCpoints_sufficiencrays 

the hypo thesis start_diagnosis is TRUB & 
IOPl1.Num_rays < 4 
some_points_insufficiencrays 
Add these IOP11 to dass IUNREUABLE_P11 



Rule4: 
IF 

THEN 

Rule 5: 
IF 

THEN 
AND 

Rule 6: 
IF 
& 

THEN 

Rule 7: 
IF 
& 

THEN 

the hypothesis all_points_sufficiencrays is TRUE & 
IOP11.Max_convergence_angle > "limit" 

alCpoints_strong-.,geometry 

the hypothesis all_points_sufficienCrays is TRUE & 

IOP11Max_convergence_angle <= "limit" 

some_points_poocgeometry 
Add these IOPl1 to dass IWEAK_Pl1 

the hypothesis all_points_strong-.,geometry is TRUE 

IOPl1>.Precision <= Precision Criteria 
network_passes_precise_criteria 

the hypothesis aICpoints_strong-.,geometry is TRUE 

IOPl1>.Precision > Precision Criteria 
network_fails_precision_criteria 

Tbe syntax of these mIes may appear somewhat cryptic, 
but can be easily understood with the help of an exarnple. 
In Rule 5, the hypothesis some yoints yoor ~geometry. 
will only be set true (confirmed) by the inference engine 
of the ES if all yoints _sulfident _rays and the conver­
gence angles of some object points are poor. Notation of 
the form Iclassl used refers to the frarne-represented 
stmcture of the knowledge. By use of pattern matching, 
this structure can be reasoned with in the mIes. For ex­
arnple, in Rule 510PI1.Max_convergence_angle requires 
the ES to test the maximum convergence angle of each 
object point in the network. Tbose points failing the test 
criteria are created as instances of a second elass, 
WEAK _ PT, sirnilarly by pattern matching. Additional di­
agnostic mIes need then only address the points in this 
latter elass when searching for the cause of the poor con­
vergence angles. 

As implied from Table 1, forward chaining is an appro­
priate reasoning strategy in diagnostic tasks. In trus strat­
egy, the inference engine applies known data to the 
conditions of each mle (LHS) in order to deterrnine the 
value of hypotheses (RHS). Tbus, if the hypothesis all_­
points _sulfident _rays is tme, mIes 4 and 5 will be evalu­
ated because they contain this hypothesis as a condition. 
Sequences of rule applied by an ES to reach conelusions, 
such as these, are terrned inference chains (or paths). Fig­
ure 11 shows the inference paths obtained from the mIes 
listed above. Expressed graphically in this manner, it can 
be elearly seen that (i) with forward chaining, the shape 
of the search space is exploited - branches of the decision 
tree containing knowledge not relevant to the current 
problem are cut off at an early stage; and (ii) the reason­
ing of the ES corresponds to that of the human expert in 
deciding whether or not a network satisfies measurement 
criteria. 
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Note finally that inference chains can be used by the ES 
to explain how it reached a particular conelusion. This 
retrospective reasoning mechanism is the most cornrnon­
ly implementation of explanation in ESs (Waterrnan, 
1986). If, for exarnple, an ES with the mIes listed above 
were to be asked to explain why it coneluded that a net­
work satisfies precision criteria, the response may be: 

As the number of ray at each point is > 4 
There is evidence that all points have sufficient rays (Rule 
2) 

And as the convergence angle at each point is o.k. 
There is evidence that all points have strong geornetry 
(Rule 4) 

And as the precision of each point is better than the criteria 
There is evidence that the network satisfies the precision 
(Rule 6). 

............................... forward chaining ····················· .. ········11··· 

11'" 
It--..... @](. 

-':111, 

.. -
" 

,;11'" 

":111, 

-­c' 
)11" 

110 .. _, 

'111., 

.:11" 
.,,,,, 

" " 
'111" 

Figure 11 Tbe inference path associated with the diag­
nostic mIes. Tbe appropriate reasoning strate­
gy is forward chaining. Ri refers to Rule i. 

This information is not only useful in debugging the 
knowledge base of the ES, but can also assists non-ex­
perts in understanding the reasoning involved in the de­
sign of photograrnrnetric networks. Tbe ES can thus be 
used as a training tool for non-experts. 

5 SUMMARY 

Abrief introduction into two of the tasks - conceptualiza­
tion and forrnalization - involved in building CONSENS, 
an expert systems for elose-range network design was 
provided in this paper. By conceprualizing the design-by­
simulation strategy used by experts into generic design, 
diagnosis and prescribing problem-solving processes, ap­
propriate reasoning strategies for the various tasks of trus 
strategy were established. 

Some heuristic knowledge involved in the diagnosis of 
networks was conceprualised into adecision tree. It was 
shown that this decision tree could be formalized into 
two standard knowledge-engineering representations -
rules and frarnes. Strucrural (hierarchical) knowledge in 
network design e.g. the carnera station, object point, im­
age point and image elements forrning the network itself, 



can be naturally represented in frames. Rules, on the oth­
er hand, are appropriate for representing heuristie net­
work design knowledge (e.g. in diagnosis). 

Finally, the considerations presented in this paper are 
based on a current understanding of the role of expertise 
in solving the network design problem and experiences 
made in developing CONSENS. Furthermore, these con­
siderations were applied to a relatively small sub-task in 
network design diagnosis. The conceptualisation and 
knowledge representation issues addressed may there­
fore not be generalisable to the entire body of network 
design expertise. For instance, the issue of spatial data 
representation and reasoning, an important element in 
network design (given that each network is indeed a spa­
tial entity), was not dealt with in this paper. 
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