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Abstract: 

The use of linear features - instead of points - in photogrammetry allows a 3D-object reconstruction without corresponding 
points in the different images. The goal of this paper is the reconstruction of a straight line in space from contarninated 
image data. A new algorithm, based on the Random SampIe method combined with the least squares adjustment, is able 
to perforrn the robust 3D-reconstruction of the line only by image observations from calibrated cameras. In numerous 
simulation experiments the algorithm is tested. 
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O. INTRODUCTION 

In order to improve our existing photogrammetrie station 
for dose range applications we aim at an automatie object 
recognition for robot vision and at precise measurements on 
the object (e.g. a car carosse). For these purposes the 3D­
object is represented by different types of linear features in 
the space like lines, cirdes or ellipses. The problem 
consists in reconstructing the 3D-structure from several2D­
images. The feature-based approach has the advantage that 
no point correspondence is required in the different images. 
So signalization of points on the object can be avoided and 
no image matching is necessary. 
The projection of a three dimensional linear feature into 
image space produces a two dimensional linear feature, 
whieh can be detected in the image as arbitrarily measured 
feature pixels. After extraction of these pixels from the 
images the determination of the 3D-feature parameters will 
be carried out with robust estimation methods. 

The paper is organized as folIows: Chapter 1 intro duces a 
model for the straight line representation, chapter 2 deals 
with robust methods for the 3D-reconstruction, chapter 3 
treats the details of the presented algorithm and chapter 4 
finally reports about the simulation results. 

1. MODEL FOR STRAIGHT LINE 
REPRESENT ATION 

1.1 Representation of a straight line in space 

A straight line in the 3D-Eudidean space has 4 degrees of 
freedom in its parametric representation (Roberts, 1988). 
Defining the straight line in terms of an arbitrary point C 
= {Cx,Cy,Cz} and an orientation ß = {ßx,ßy,ßz} is a 
representation whieh is not unique and uses more 
parameters than necessary. For that reason two constraint 
equations are imposed: First, the direction vector ß is 
forced to be a unit vector. Second, C is chosen as the line's 
nearest point to the origin, the Une center point. 
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constraint 1: I ß I = ß/ + ß/ + ßz2 = 1 (1-1) 

constraint 2: ß-C = ßx Cx + ßy Cy + ßz Cz = 0 (1-2) 

x 
Fig. 1: Straight line representation, using two constraints 

The only remaining weakness of this representation is the 
undetermined sign of the vector ß. Because this plays no 
role in the calculations later on, no conventions are made 
concerning the sign. 

1.2 Photogrammetric treatment of space lines 

Usually the relationship between object- and image space 
is expressed by the collinearity equation. The weak point of 
this pointwise representation is the need of many nuisance 
parameters in addition to the line parameters. A better way 
is a feature description based on the object space geometry 
(Mulawa, 1988). 
The image ray p is the vector from the perspective center 
L to the observed image point (x,y). Its direction in space 
is calculated from the orientation data of the corresponding 
perspective center. The image coordinates are assumed to 
be corrected from systematie errors. 

x 

p = R Y (1-3) 

-c 

R = rotation matrix; c = camera constant 



In case of errorfree observations the object line, the 
observed image ray p from the perspective center L to any 
point P on the line and the vector between the perspective 
center Land the Une center point C form a plane. 

line ---- p 

L 

Fig. 2: Line representation in object and image space 

This coplanarity relationship can be expressed by the scalar 
tripie product 

[p ß (C-L)] ::: 0 (1-4) 

The expression is free of any nuisance parameters. One 
equation allows the description of one observed point (x,y). 
The linearization of (1-4) with respect to the parameters C 
and ß to be determined in aspace intersection gi ves 

aF ::: [(e _ L) x p] T , aF = [p x ß ] T 

aß ac 
(1-5) 

According to (Mulawa, 1988) the coplanarity relationship 
is very stable with respect to the initial approximations. 
Line determination is not possible, when two cameras are 
used and the line falls on an epipolar plane of the cameras. 

1.3 Model with conditions and constraints for least 
squares adjustment 

The model with conditions and constraints is chosen for a 
least squares adjustment of C and ß. The model is applied 
in order to handle the implicit observation equation and the 
two constraints. This paper will present the model only in 
a rough way, because it is already detailed described in 
(Mikhail, 1976) and (Mulawa, 1988). 

The covariance matrix L of observations is usually scaled 
by the apriori reference variance cr2

• In the adjustment the 
scaled version Q is used. 

(1-6) 

The linearization of the non linear condition equation F is 
done by the Taylor Series expansion up to the first order. 

F(l,x) ~ F(l,xo) + ~~ .6.1 + ~=.6.x (1-7) 

~ -f + Av + BLl 

= [X1,yl, ... ,xn,yn] = vector of image observations 
v = residuals, approximation that v == ~I 
X = unknown parameters Cx' C y' ßx' ßy' ßz 
A = superscript referring to estimated values 

X o = current approximations for parameters 
A = matrix of derivates with respect observations 
B = matrix of derivates with respect unknowns 
L1x = corrections to parameters 
f = coplanarity value = current value of condition equation 
n = number of image observations 

660 

c = number of condition equations = Y2n 
u = number of parameters = 6 

The linearized form of the condition equation is written 

(1-8) 

As weights for the condition equations F j - including both 
observations Xi and Yi - the matrix We is introduced as 

(1-9) 

The matrix Qe has diagonal structure and its elements are 
here called 'pseudo weights'. In the value of a pseudo 
weight the individual weights of the coordinates and the 
local geometry described by the matrix Aare involved. 
The linearized form of the two constraint equations is 

(1-10) 

where s = number of constraint equations = 2 

The least squares technique is based on minimizing a 
quadratic form. It leads to the normal equations 

(1-11) 

For building up the matrices BTWeB and nTWl in a 
computational efficient way the summation accumulation 
algorithm suggested by (Mulawa, 1988) is used. It is based 
on the diagonal structure of the A and Q matrices, so that 
a pointwise partitioning of the data and the matrices is 
possible. One update step consists of calculating the 
matrices or vectors A, We, Band f only due to one 
condition equation. The complete normal equation is the 
sum of all those pointwise calculated values. 

The redundancy of this model is r = c - (u - s). Then the 
aposteriori reference variance can be computed by 

(1-12) 
r r 

Here the second term of this expression was used because 
the residuals v are not computed. All considerations about 
quality and outlier detection are done with the coplanarity 
values f. The coordinates x,y are not any longer handled as 
single observations. The coplanarity values offer the 
treatment of a point as 'pseudo observation' with a standard 
deviation expressed in the inverse pseudo weight and the 
coplanarity value as residuaL 



2. ROBUST METHODS FOR OBJECT 
RECONSTRUCTION 

A general problem when dealing with real measurements is 
the influence of data contamination such as noise and 
outliers on the result. The aim of the present research is a 
reliable 3D-reconstruction of features from images. In a 
first step the feature pixels are extracted from the images 
with the help of any edge detection routines, whose 
robustness is not discussed in this paper. The extracted 
pixels are the input to the presented algorithm. Pixels from 
other features or errorpixels are outliers related to our line. 
The term 'robust' here means that we want to have a result 
which takes only those pixels into account which really 
belong to our line. 
A least squares adjustment leads to wrong results when the 
data contains observations which do not belong to the 
model (Huber, 1981), (Rousseeuw/Leroy, 1987), (Förstner, 
1989). Even a single outlying observation may affect the 
result severely. 
Methods of hypothesis testing using test statistics are able 
to detect outliers, but they don't work very effective in 
presence of a high contamination. 
In image processing, however, we sometimes have to deal 
with highly contaminated data. For that reason different 
attempts have been made to develop robust methods. Some 
of the methods are the M-estimation (Huber, 1981), the 
Random Sampling Consensus procedure of (Fischler/Bolles, 
1981) and the Least Median Squares estimation by 
(Rouseeuw/Leroy, 1987). They an have in common that 
they try to find out how weIl an observation fits into the 
model. This is expressed by an individual weight for each 
observation. 

2.1 The random sampIe consensus procedure 

Random sampie consensus (RANSAC) is a hypothesis­
verify technique which can be used for determining model 
parameters, even if the amount of contamination exceeds 
50% (E > 0.5). It requires no initial values. A closed form 
solution for the parameters, based on a minimum set of u 
observations, must be known. For some problems these 
solutions are complicated or impossible. BasicaHy the 
technique works in the following heuristic way: 
1) Determine parameters from a random subset of u 

observations. 
2) Compute residuals for all observations. A tolerance 

threshold, based on the expected noise level, has to 
decide if an observation will be accepted. 

3) Count accepted observations. 
4) Stop procedure when enough observations are accepted, 

otherwise repeat it with a new random subset. 
Remark: Residuals in this procedure shouldn' t be mixed up 
with the residuals v in chapter 1.3. The computation of the 
residuals meant here is explained in 3.2.1. 

The algorithm parameters are the threshold for data 
acceptance in step 2), the threshold for model acceptance 
in step 4) and the number of subsets needed. The latter 
corresponds to the computation time. More about the 
number of sub sets in chapter 2.1.1. The thresholds are 
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discussed for the special case of aspace line in chapter 
3.1.1. The determination of model parameters in step 1) by 
a closed form solution is treated in chapter 3.1. 

The described method is a powerful tool to detect outliers 
and to find approximate values for model parameters. 
The method is not able to find the best possible solution 
when not all subsets are used or when the non-outlying 
observations are noisy. How to procede in case of noisy 
data is treated for the space line example in chapter 3.3. 

2.1.1 The number of sub sets in RANSAC 

According to step 4) in the RANSAC procedure the 
computations are finished when enough observations are 
accepted. In general, however, the correct solution, the 
number and size of outliers and the optimum threshold for 
data acceptance are unknown. Under these circumstances 
the best matching subset cannot be determined. For very 
smaIl data sets aIl possible subsets are taken, but this is not 
possible for large data sets, because the number of subsets 
as weIl as the computation time increases rapidly. 

Under the assumption that the data contains n-o 'good' and 
o 'bad' points, the expected number m of random subsets 
to find at least one subset containing u good observations 
can be calculated due to prob ability laws. The probability 
to have at least one sub set is usuaIly set to 95% or 99%. 
The probability for one subset to contain u good points is 

P = (1 - ~) (1- ~) (1 _ ° ) 
u n n-l ... n-(u+l) 

(2-1) 

The probability of at least one uncontaminated subset out 
of m can be calculated by the binomial distribution: 

(2-2) 

Instead of this exact formula an approximation is given for 
large numbers n of observations and a contamination of E% 
(Rousseeuw /Leroy, 1987): 

1-(1-(l-e)u)m) = 95% 

~ m = __ 1_o.=g_O_.O_5 __ 
log (1 (1 - e)U ) 

(2-3) 

Unfortunately the formula requires the input of E which is 
usually not known exactly. Some experimental results on a 
suitable number of subsets are presented in chapter 4. 

2.2 Least median squares method 

Another heuristic, robust method is the least median 
squares estimation (Rousseeuw/Leroy, 1987). Here the 
squared residuals of observations according to different 
random models are computed. The model with the smallest 
median of squared residuals will be the solution. 



med (residuals/) -> minimum 

This method is able to cope with an amount of outliers up 
to 49.9%. In this study the method is not applied. 

2.3 M-estimation, a robust adjustment technique 

In contrast to the methods mentioned before the maximum­
likelihood-type or M-estimation is a deterministic 
procedure. In the M-estimation one ends up at minimizing 
the sum of a function of squared residuals (Huber, 1981), 
(Förstner, 1989). That function is called weight function 
with the values Wj • 

~ 2 • 
L.J Wi r i -> miD. (2-4) 

i 

The minimization procedure is an iteratively reweighted 
least squares adjustment. A difficult problem is the proper 
choice of the weights wj • The weight function has to fuIfi! 
certain mathematical properties, described in (Huber, 1981), 
to guarantee the adjustment converge to a solution. 
For the method the calculation time can be predicted. 

It is planned to use the M-estimation for the line 
reconstruction with the Danish reweighting method 
(Krarup/Kubik, 1981). The residuals should be derived 
from the coplanarity values f. Some very first experiments 
showed that the method seems to be able to cope with 
noise and outliers up to a certain amount and size. The 
required approximate values might be taken from the 
results of the RANSAC technique. 

3. ALGORITHM FOR ROBUST 3D-LINE 
RECONSTRUCTION 

In this chapter a method is explained how to reconstruct a 
3D-line from errorous observations in several images. Up 
to now the algorithm is specialized on lines as used in the 
simulation experiments. Some routines and thresholds still 
have to be tested for more general cases. A method is 
presented of combining the RANSAC method with the least 
squares adjustment. In the experiments this turned out to be 
a suitable way to cope with the noise and the outliers. 

3.1 A closed form solution for the RANSAC procedure 

The underdetermined perspective view from 2D- to 3D­
space is an inverse problem, which possesses no direct 
analytical solution. 
A closed form solution for the 6 line parameters can be 
obtained from space geometry. No linearizations or initial 
values are needed, but knowledge is required about the 
camera constant c, the position Land the orientation R of 
two perspective centers. The presented solution requires the 
input of two different image points out of two images. 

3.1.1 Closed form solution for the line center point C 
and the line direction vector ß 

image 1 

Fig. 3: Space geometry in the closed form solution 

In a first step the four image rays Pij from the perspective 
centers to the image points are constructed. The observed 
ray (xij ' Yij' -Ci) of a point j in image i is transformed into 
space with the help of the rotation matrix Ri : 

(3 ·-1) 

Two rays belonging to one image construct a 'projection' 
plane, which is described by its normal vector 
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(3-2) 

The space line is the intersection of the two projection 
planes. Thus the direction vector ß of the line is 
perpendicular to both normal vectors Nt, N2• 

N 1xN2 ß = 
11 Nlx N2 11 

(3-3) 

To calculate the center point C of the line, a linear equation 
system is designed. It contains the equations of two 
projection planes in space and the second model constraint. 

The position of a projection plane in space can be described 
by its normal vector N and a point lying in the plane, the 
perspective center L. 

o = Nix L1x + N1y L1y + N1z L1z - d1 

o = N2x L2x + N2y L2y + N2z L2z - dz 
(3-4) 

Knowing Nt, N2, Li and L2 we get d1 and d2 out of these 
equations. Then the 3x3 linear equation system can be 
solved for the line center point C. 

constraint: 

plane1: 
plane2: 



3.1.2 Stability of the closed form solution 

Stability means that small changes in the data produce 
small changes in the results. In case the geometrie situation 
is not stable, singularities in the analytical formulas and 
unreliable results may occur. 
The input to the dosed form solution described above 
consists of 4 randomly chosen image points. In order to 
avoid those combinations of image points, whieh lead to an 
ill-conditioned geometry, a measure for the stability of the 
solution is developped. 
Weak points with respect to the numerical sensitivity are 
the three cross products used to compute the line direction 
vector ß. A cross product is computed in a stable way if 
the angle between the two input vectors is dose to 90°. In 
case the angle comes dose to 0°, the result is a random 
outcome according to the noise in the input vector 
components. Image points very dose to each other as weIl 
as line!camera formations with similar projection planes 
should be avoided. 
The stability of a cross product axb is measured by the 
sinus of the angle c:p between two vectors a and b: 

sin - /laxbll 
<p - IIalllib 11 (3-6) 

Random points for whieh the value of sin c:p doesn't exceed 
an upper bound are considered to have a good geometry. 
The thresholds can be derived from error propagation of the 
interior camera geometry and the noise level. 
In this study the thresholds were found by experiments. The 
value 0.05 for the cross products of the image rays and 0.2 
for the cross product of the normal vectors were suffieient 
to avoid bad cases. Because of the nearly symmetric 
geometry in the experiments the impact of the stability of 
N1xN2 is very strong and so the threshold very low. 

3.2 Application of the RANSAC method 

The straight line model, described by (1-4), allows the 
calculation of the RANSAC algorithm parameters based on 
the individual geometry of that li ne representation. 

3.2.1 Thresholds for outUer detection and model 
acceptance 

An important Hem in the RANSAC procedure is the 
decision in algorithm step 2) if an observation fits or not 
into the model of a certain random subset. The decision is 
drawn with the help of a threshold for the residuals. 
As residual the coplanarity value fis taken. It can be seen 
as 'pseudo residual' - compared to the residuals v of the 
original observations. It is computed by the scalar tripie 
product, where the observation data is the original one and 
the line center and line direction come from the random 
model. The coplanarity value f, expressing the volume of 
the error tetrahedon, grows strongest along the normal of 
the projection plane. 
The coplanarity values are scaled by their pseudo weights 
Qe i to make them comparable to each other. The pseudo 
residual d i for one point is 
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(3-7) 

A point is called outlier when its pseudo residual d i is 
larger than a threshold t = 3 * noiselevel. The noiselevel is 
the expected noise of the image observations. Thus the 
comparison is done in image space. For the further 
processing the observation weights are set to 0 in order to 
mark an outlier and to 1 for an accepted point. The number 
of accepted points for one random subset is counted. 

The threshold for the model acceptance in algorithm step 4) 
has to decide whieh one of the models fits the data best. 
The primary best fit criterion is the number of inliers, the 
secondary is the aposteriori reference variance. 

ö2 = f We f (3-8) 

Of course the search for the best model is limited to those 
models provided by the used random subsets. The chances 
for better results grow with the number of subsets. 

3.3 RANSAC in the presence of noise 

What happens to the RANSAC solution, when the data is 
as weIl noisy as contaminated with outliers? - Up to now 
the RANSAC distinguishes between good and bad 
observations. The procedure is designed to find a subset 
containing only good points, even if the noise in these good 
points might be so heavy that the solution becomes wrong. 
One method against that is to get rid of those random 
points which are very dose to each odler and easily 
produce an incorrect solution. 
But even points at different ends of a line segment may in 
some case produce a solution deviating from the correct 
line more than 3*noiselevel for the most image points. The 
consequence is the detection of more outliers than really 
exist and the rejection of the model. 

:rrect line 

~;"wrong 
- - - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ line 
• • 

Fig. 4: RANSAC-solution for a line, based on a random 
subset with noisy observations 

The basic idea to cope with the noise in the observations of 
the random sub set is to use a least squares adjustment, after 
an initial solution is found by the dosed form solution. 
Because the observation weights are set to 1 and 0, only 
the reduced set of inlying points is used for the adjustment. 
The normal distributed noise in the points will affect the 
least squares solution come doser to the correct line than 
the RANSAC solution and find more inlying points. After 
some iterations this process is able to find the best possible 
solution of a certain subset. The iterations are stopped when 
no more inliers are found. If the same data is used, all 
random subsets will end up in exactly - with respect to the 
computing precision - the same least squares solution. 



3.4 Algorithm for a combined procedure of RANSAC 
and 1/0-weighted least squares adjustment 

The main steps of the algorithm tested in the simulation 
experiments are the following: 

- determine number of subsets 
for i=O up to the number of subsets 
{ 

- Choose 2 different random points in 2 random images. 
- Compute the line direction for the actual subset. 
- Check the stability; if geometry not stable reject subset. 
- Compute the line center for the actual sub set. 
- Set all observation weights to 1. 
- Compute the residuals d j for all points with respect to 

the actual solution and detect outliers. 
- Count the number of inliers. 
if (more than 4 inliers (~ random points» 
while (number of inliers changes) 
{ 

- Do a least squares adjustment with the weights 1 or 0. 
- Reset all observation weights to 1. 
- Compute residuals, detect outliers and count inliers. 
- Compute the reference variance of the actual fit. 

} end of while-loop 
} end of for-loop 
- Find the best sub set as the solution with the maximum 

number of inliers and the smallest reference variance. 

4. SIMULATION EXPERIMENTS 

A straight line reconstruction was simulated with the help 
of a generated space line. 

4.1 The simulation data 

The space line is observed by 4 cameras and represented by 
96 image points equally distributed over the 4 images. The 
image format is 512 x 512 pixels. For the generation a line 
center point C (0,0,0) and a normalized line direction 
vector ß (.f1Js,.f1Js,.f1Js) is used. 
In this experiment the 24 points per image correspond to 
the points in the other images. In general, however, this 
correspondence is not required for the chosen line 
representation. 

z 

L4~'-------~----
, ' 
, ' 

L .-2, 

- - - - - - - - I , ' 

x 

Fig. 5: Camera positions in the simulation experiments 
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The camera constant is 950 pixel for each camera. The 
positions and orientation angles of the cameras are given. 
In addition to the basic data the simulation parameters are: 
1) noiselevel 0' = standard deviation of normal distribution, 
2) number of outliers = 0, 

3) size of outliers, size = s*O' 

4.2 Noise and outlier generation 

In all experiments Gaussian noise is used, distributed like 
N(mean, noiselevel) = N(O,!). The noisy point is generated 
by shifting the original point away from its position in 
perpendicular direction to the correct line. The 
perpendicular distance of the shift equals the value of the 
normal distribution. All points are contaminated with noise. 

After the contamination with noise the outlying points are 
randomly selected. Their number is as equally as possible 
distributed over the 4 images. 
Two variations of outlier generation are used. 
The first variation produces outliers which all possess the 
same perpendicular distance from the correct line. Their 
position is reached after a shift with random sign and 
absolute value of size s*O'. In·the following text this kind 
of outliers is called 'constant' outliers. 
The second variation produces outliers, whose absolute 
value of the perpendicular shift is uniformly distributed in 
the interval [-s*O'; +s*O']. That kind of outliers is called 
'variable' outliers. 

4.3 Experiments 

The experiments are carried out by reading the original 
data, then contaminating the data with normal distributed 
noise and outliers, marking the outlying points and 
performing the algorithm listed in 3.4. In the end some 
values for the table statistics are counted. 

For the experiments with outliers wh ich possess a constant 
distance from the correct line, following values are 
calculated and listed in the table columns: 
[1] percentage of outliers (among 96 points) 
[2] constant distance of outliers from line [pixel] 
[3] number of subsets for RANSAC procedure 
[4] prob ability [%] for at least 1 good subset (see 2-3) 
[5] number of experiments carried out for the results in 

one line of the table 
[6] percentage of experiments wh ich find the correct 

line, detect all outliers and reject not more than 3 
good points = success rate = convergence rate 

[7] percentage of experiments which don' t converge to 
the correct line = faHure rate 

[8] percentage of successful experiments with solutions 
based on a randorn sub set containing outliers 

[9] prob ability [%] for detection of a good point as 
outlier = faise alarms = EI 

The prob ability of EI equals the prob ability to generate 
normal noise exceeding 30', which is 



e = 2 - exp - <Ix = 0.26998% f OG 1 ( x
2 

) 

1 3 {fit 202 
(4-1) 

In an experiment converging to the correct line 0.259% of 
the good points should be detected as outliers. The practical 
value to compare this to, is calculated as the (number of 
false alarms in all successful experiments) divided by the 
(inlying points of all successful experiments). 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 
cont. size sets prob. exp. succ. fail out Cl 

0.0 0 1 100 10000 100.0 0.0 - 0.214 

4.2 10 2 95 10000 99.8 0.2 - 0.208 
4.2 10 3 99 1000 100.0 0.0 9 0.176 
4.2 20 2 95 1000 97.3 2.7 1 0.215 
4.2 20 3 99 1000 99.6 0.4 1 0.192 
4.2 50 2 95 1000 95.7 4.3 1 0.198 
4.2 50 3 99 1000 98.8 1.2 1 0.188 
4.2 50 4 99.9 1000 99.9 0.1 1 0.171 
4.2 100 2 95 10000 95.9 4.1 - 0.211 
4.2 100 3 99 10000 99.1 0.9 - 0.204 
4.2 100 4 99.9 10000 99.8 0.2 - 0.198 

8.3 10 3 95 3000 99.7 0.3 17 0.205 
8.3 10 4 99 2000 99.9 0.1 18 0.183 
8.3 10 5 99.5 10000 99.9 0.1 18 0.202 
8.3 50 3 95 3000 95.0 5.0 2 0.202 
8.3 50 4 99 7000 98.3 1.7 1 0.206 
8.3 50 5 99.5 10000 99.4 0.6 2 0.193 
8.3 100 3 95 3000 94.5 5.5 2 0.187 
8.3 100 4 99 3000 98.5 1.5 1 0.185 
8.3 100 5 99.5 10000 99.4 0.6 2 0.198 

25.0 10 8 95 10000 98.3 1.7 - 0'-,197 
25.0 10 13 99 10000 99.8 0.2 23 0.182 
25.0 50 8 95 1000 88.4 11.6 3 0.178 
25.0 50 13 99 1000 96.4 3.6 4 0.212 
25.0 100 8 95 10000 86.4 13.6 - 0.213 
25.0 100 10 97 10000 90.7 9.3 - 0.203 
25.0 100 13 99 10000 94.2 5.8 - 0.198 

49.0 10 43 95 1000 93.9 6.1 - 0.176 
49.0 10 66 99 1000 98.4 1.6 11 0.224 
49.0 50 43 95 1000 81.2 18.8 5 0.231 
49.0 50 66 99 1000 91.8 8.2 5 0.213 
49.0 100 43 95 1000 64.7 35.3 - 0.161 
49.0 100 66 99 1000 72.0 28.0 7 0.161 

62.5 10 150 95 1000 79.8 20.2 4 0.237 
62.5 100 150 95 1000 50.8 49.2 7 0.252 

Table 1: Experimental results for detection of outliers with 
constant distance from the correct line 

Results from table 1: 
In a first experiment the algorithm is tested without outliers 
in the data, but with Gaussian noise N(O,l) in the image 
coordinates. The table shows that the algorithm converges 
in 100% to the correct line, so it is able to deal with noise. 

The values of [6] + [7] have to equal [5]. This means that 
the probability not to detect an outlier in a properly 
converging experiment can be assumed to be zero. The 
reason of that are the non overlapping noise distributions of 
the outliers and the line points - in case the outlier distance 
from the line is at least 10 pixels. 

The probability Cl to detect good points as outliers is 
around 0.20% in the experiments. For unknown reasons this 
rate is better than the theoretical value for false alarms of 
0.26%. 

The frequency of successful experiments in [6] is compared 
to the value in [4] for a RANSAC procedure. Because of 
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the additional iterative least squares adjustment the values 
are different. Even if there is an outlier in the subset, the 
line may converge to its correct position. In that case the 
RANSAC solution has provided enough inlying points as 
input to the adjustment. Column [8] shows the dependency 
from the size of outliers. The smaller the outlier distance, 
the easier a sub set containing bad points will converge. The 
increase of the convergence rate for small outlier sizes is an 
advantage of the algorithm in contrast to RANSAC. 
On the other hand the convergence rate is worse than in 
theory if there are large outliers and a high amount of 
contamination. In these cases the number of subsets derived 
from (2-3) does not seem to be sufficient. It still has to be 
examined if a number of subsets, derived from the exact 
expression of probability (2-2), brings better results. 

A second group of experiments examines the behaviour of 
the algorithm for uniformly distributed outliers. Here some 
outliers have a small size so that it is impossible to detect 
them. The probability to detect all outliers in one 
experiment is based on c2' the prob ability not to detect one 
outlier in the interval [-3*0',+3*0']. 

C2 = 2*3*0'/s*0' (4-2) 

So the probability to detect all outliers 0 in one experiment 
is 

P( detect 0 outliers) = (1-c2) 0 (4-3) 

Following values are listed in the table: 
[1] percentage of outliers (among 96 points) 
[2] maximum size for uniformly distributed outliers [pell 
[3] number of subsets for RANSAC procedure 
[ 4] number of experiments carried out for the results in 

one line of the table 
[5] percentage of experiments which find the correct 

line, detect an outliers and not more than 3 good 
points = success rate != convergence rate 

[6] percentage of experiments which don't converge to 
the correct line = failure rate 

[7] percentage of successful experiments out of all 
experiments which converge to the line 
= [5]*100/ (100 - [6]) 

[8] theoretical probability [%] for an experiment to find 
all outliers under the assumption that it has found 
the correct line 

The percentage of experiments finding the correct line, 
detecting or not all outliers (= convergence rate), equals 
100% - [6]. 



[1] [2] [3] [4] [5] [6] [7] [8] 
out 1. size sets exp. success fail conv. theory 

4.2 10 2 1000 20.7 0.0 20.7 24.0 
4.2 10 3 1000 22.3 0.0 22.3 24.0 
4.2 20 2 1000 46.3 0.4 46.5 52.2 
4.2 20 3 1000 49.8 0.4 50.0 52.2 
4.2 50 2 1000 75.9 1.0 76.7 78.1 
4.2 50 3 1000 76.9 0.2 77.1 78.1 
4.2 100 2 1000 86.0 1.7 87.5 88.5 
4.2 100 3 1000 87.9 0.3 88.2 88.5 

8.3 10 3 1000 5.1 0.0 5.1 5.8 
8.3 10 4 1000 5.0 0.0 5.0 5.0 
8.3 20 3 1000 24.8 0.6 25.0 27.3 
8.3 20 4 1000 25.3 0.0 25.3 27.3 
8.3 50 3 1000 56.7 1.5 57.6 61.0 
8.3 50 4 1000 59.3 0.7 59.7 61.0 
8.3 100 3 1000 70.8 3.8 73.6 78.4 
8.3 100 4 1000 76.3 0.9 77.0 78.4 

25.0 10 8 1000 0.1 0.0 0.0 0.0 
25.0 10 13 1000 0.0 0.3 0.0 0.0 
25.0 20 8 1000 1.2 0.4 1.2 2.0 
25.0 20 13 1000 1.8 0.1 1.8 2.0 
25.0 50 8 1000 21.5 3.5 22.3 22.7 
25.0 50 13 1000 19.8 0.6 19.9 22.7 
25.0 100 8 1000 39.7 7.3 42.8 48.1 
25.0 100 13 1000 44.6 3.1 46.0 48.1 

49.0 10 43 1000 0.0 0.1 0.0 0.0 
49.0 20 43 1000 0.0 1.3 0.0 0.1 
49.0 50 43 1000 4.0 6.0 4.3 5.5 
49.0 50 66 1000 4.0 5.1 4.2 5.5 
49.0 100 43 1000 15.9 16.8 19.1 23.9 
49.0 100 66 1000 17.3 12.3 19.7 23.9 

62.5 100 150 1000 8.2 32.0 12.1 16.1 
62.5 100 231 1000 8.0 26.6 10.9 16.1 

Table 2: Experimental results for detection of outliers with 
variable distance from the correct line 

Results from table 2: 
The practical results in column [7] are quite close to the 
theoretical values of [8]. The expected detection rate of 
outliers [8] is slightly higher than the rate in the 
experiments [7]. The rate of converging experiments is 
higher than in the experiments with constant sized outliers. 

5. CONCLUSIONS AND OUTLOOK 

The combined RANSAC/least squares algorithm is an 
effective method for the robust reconstruction of aspace 
line. The line parameters are derived directly from the 
observations without any approximate values. A success of 
the method is guaranteed with a probability that can be 
predicted under the knowledge of the algorithm parameters 
and some preknowledge on the data (number and size of 
outliers). This paper verifies theoretical probabilities by 
practical results. It also reveals the complexity of 
dependencies between the algorithm parameters and their 
effects on the results (success rate, convergence rate, failure 
rate, frequency of false alarms). This might help to develop 
a problem orientated parameter choice in order to get a 
high probability for a robust solution. 
The application of the algorithm can be extended to other 
linear features such as circles or ellipses. In industrial 
applications we usually have a preknowledge about the 
approximate feature parameters. Then robust techniques like 
the M-estimation, wh ich are not dependend on closed form 
solutions, may be used. 
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