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Abstract

With the autonomous road vehicle VaMoRs behavioral
competences have been developed over the last decade for
visually guided longitudinal and lateral road following
including obstacle avoidance; these methods are numeri-
cally very efficient and locally adequate. They do not
allow global navigation. With the autonomously guided
vehicle ATHENE for transportation tasks on the factory
floor, indoor landmark navigation has been demonstrated
exploiting the same 4D-approach to dynamic machine
vision.

Combining the results of both application areas, a very
flexible and powerful intelligent navigation scheme is
achieved. The background and the basic features of this
new method are discussed.
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1. Introduction

Route planning and visual guidance of vehicles has been
a subject of research in artificial intelligence for a long
time. The remote sensing capability of vision allows an
agent to orient itself relative to the environment and to
other objects up to relatively large distances.

In well developed road networks the capability to per-
form complex missions, clearly has three essential com-
ponents: 1. safe movement along the road disregarding
navigational aspects in the large (so-called cruise phases),
2. orientation on the mission scale and taking proper
navigational decisions when required, and 3. the capability
of implementing navigational maneuvers from the pre-
vious to the following cruise section.

The first task has been solved and demonstrated with
VaMoRs, a 5-ton van with proper sensing and actuation
capabilities, extending recursive estimation techniques to
image sequence processing with the 4D-approach [Dick-
manns, Zapp 86, 87; Dickmanns, Christians 89, 91; Dick-
manas, Graefe 88; Dickmanns, Mysliwetz 92]. Lane
following, convoy driving , stop-&-go in a traffic jam, and
lane changing, all have been demonstrated in the frame-
work of the EUREKA-project PROMETHEUS with the
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’Common European Demonstrator-3’ VITA of our in-
dustrial partner Daimler-Benz. Obstacles may be detected
at ranges up to 100 m and proper reactions are triggered
through situation assessment and feed-forward or feed-
back control actuations.

Task two has been tackled in our group first for guiding
vehicles on the factory floor [Hock 91]. If a flexible
scheme requiring little hardware installations is being
looked for, visual landmark navigation is the way to go;
the least expensive approach would be that well discern-
ible feature groupings already present in the environment
may serve as landmarks and are sufficient for reliable
recognition of the actual vehicle position. This is exactly
how humans and animals tend to find their way around,
even when due to changing lighting conditions and annual
seasons the appearance of landmarks changes systemati-
cally. The 4D-approach integrating temporal aspects right
from the beginning is well suited for realising this scheme
efficiently. It requires memory and knowledge processing
onboard the system. .

The third task mentioned above also has been tackled
successfully: On the Autobahn, navigation is simply done
by proper lane changing and lane following; up to now,
the trigger impulse had to come from the human operator.
Howeuver, it is relatively simple to achieve full autonomy
once the capability of traffic sign recognition can be
incorporated. On normal roads, the capability of recogniz-
ing crossroads as landmarks and of turning off is the
behavioral competence required; this is being worked at
[Miiller 92].

The term autonomous robot” seems to be surprising at
first sight, since *robot’ per se is an autonomous device by
definition. Most of the industrial robots, however, still
have a link between a human operator and the machine.,
The robot follows a predefined program with no choice of
making own decisions. A large amount of research work
in the field of robotics is devoted to reducing the need for
information exchange between man and machine. A nec-
essary step towards autonomy is to provide intelligence
within the onboard devices. Autonomous operation is then
determined by the intelligence of the machine.

The dictionary [Hornby 78] explains the word ’intel-
ligence’ as the ’power of perceiving, learning, under-
standing, knowing, mental ability’. Perception and
understanding of the operational environment for mobile
robots are the main aspects of research work performed at
UniBwM over the last decade.




A large fraction of our knowledge about the real world
is concerned with the temporal domain; we learn to under-
stand this during early life more or less subconsciously
while the capability of crawling, walking and manipulat-
ing other objects under earth gravity is being acquired. The
temporal sequence of states of moving objects and their
transition characteristics constitute very essential knowl-
edge about the real world providing us with the capability
of acting adequately even though it does not seem to be
represented explicitly. This has long been overlooked in
Artificial Intelligence which concentrated its efforts on
explicitly represented abstract knowledge about quasi-
static relations between objects in the world.

The natural sciences and engineering technology have
developed adequate methods for representing these facts
about the physical world. They describe them within the
framework of differential equations with time as mono-
tonically increasing independent variable. As I.Kant has
elaborated in his ’Critiques ...” more than two centuries
ago it has to be kept in mind that space and time are not
properties of objects. We cannot help carrying it into the
world by our sensing and analysis systems; we ourselves
exist in these basic four dimensions. Therefore, it was
decided to install these basic four dimensions in the 4D-
approach to dynamic machine vision right from the begin-
ning in order to be able to deal with the real world
efficiently. This was the main contribution of our approach
to machine vision; the rest follows almost automatically.

2. System components

The availability of two different testbeds each with a
navigation system based on the 4D-approach [Dickmanns,
Graefe, 88], allows test runs to be performed under various

Fig.1: Experimental vehicles: a) VaMoRs b) ATHENE
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kinds of circumstances. The first vehicle is clearly
specified to indoor applications and called ’ATHENE’,
whereas the second one, dubbed *VaMoRs’, is designed
for outdoor usage. Each system has its specific advan-
tages, but the overall design of the navigation system is
closely related, so there are no difficulties to transfer well
proven solutions between the two. Since *VaMoRs” is well
documented in [Zapp 88; Dickmanns, Graefe 88] more
effort is put on describing details of ’ATHENE’ in this
paper.

The main components of the indoor experimental setup
can be divided into three categories. First, the robot itself,
which is a converted AGV equipped with all necessary
actuators, interfaces and onboard power supply. Second,
a special multiprocessor vision system for realtime image
sequence analysis and interpretation is placed on the ve-
hicle, and third, there are two extra computers for the
navigational task and the low level control system.
ATHENE can be driven autonomously under computer
control and serves as arolling indoor platform for research
work on landmark navigation and computer vision.

In the front part of the vehicle an electromechanical pan
platform is mounted carrying a standard monochrome
CCD camera. Viewing direction control is done either by
the navigation system or the vision system itself, depend-
ing on the actual task. The camera pointing capability
allows active scene search and horizontal tracking, e.g. for
initial self orientation or landmark tracking while driving.

For image sequence processing a custom made system
BVYV 2 [Graefe 90] with four Intel 80286 processors has
been utilized in the experiments. This multiprocessor sys-
tem of the MIMD type consists (in the case of the indoor
application) of 4 commercial, standard Multibus I single-
board computers spanning the performance range from
8086 to 80286. Key feature of this multiprocessor vision-
systemn is the physically distributed, thus truly parallel
image access capability of all CPUs directly involved in
image operations. This overcomes the common I/O bot-
tleneck of general purpose machines, in which usually
only one processor has direct image access. Here, no
central frame store exists. Any processor linked to the
videobus through a custom made videobus-interface
(VBI) can simultaneously access and process a subseg-
ment (window) of the digitized 256 by 244x8 bit per pel
grayscale image. The VBI basically is a hardware-attach-
ment to a standard singleboard computer containing a
window-selection logic and two fast window-buffers stor-
ing 4k pel each. Multiple windows can be independently
positioned or changed in size, shape and sampling density
under software control. It should be noted that except for
the VBI no custom hardware and no dedicated image
processing devices are being used in this experimental
system. The advantages of applying easily programmable
standard microprocessors instead, proved to be significant
for the system’s applicability and efficiency as a research
tool. A further key point is the flexible interprocessor
communication scheme based on message passing, form-
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Fig.2: Architecture of BVV 2

ing a loosely coupled system requiring only modest bus
bandwith. Using the communication services of the dis-
tributed operating system kernel, a desired processing
structure can be defined entirely by downloadable appli-
cation software. Thus, task specific cooperating processor
clusters can be formed. Typically, such a CPU group
consists of several *Parallel Image Processors’ (PP) at a
low hierarchical level that perform local feature extraction
operations on their windows. The PPs of a group may be
coordinated by a ’General Purpose Processor’ (GPP, more
recently renamed 4D-object processor 4D-OP) at a higher
hierarchical level, which interprets the PPs’ feature-data
and controls or guides the activities of its PP group (see
also fig.2).

Low level control of motors, collection of information
from all kinds of sensors and preprocessing of sensor data
is performed by a SMP-System (Intel 80186), which holds
a number of I/O function boards. The navigation software
and the overall management runs on a 80386 PC-AT
compatible computer, which also serves for mass storage,
real-time data logging and software development. Com-
munication between the three computer systems is done
via an IEC bus.

The second testbed serves as ’rolling fieldlab’ for com-
puter vision research in outdoor applications with human
operators and supervisors on board and is known as
’VaMoRs’. This vehicle has drawn international attention
by the demonstration of autonomous road-following at
speeds up tp 96 kav'h in 1987. This demonstration set a
world record for autonomous road vehicles. Beside the
physical appearance, the main differences between the
two testbeds, looked at from a navigational point of view,
are found in the more powerful image processing system
and the sophisticated pointing device for the camera. An
electromechanical pan-tilt platform carrying two CCD
cameras mounted in the center behind the front wind-
shield, hanging from the roof, provides fast 2-axis viewing
direction control. Its control is part of the vision-system.
Equipped with lenses of different focal length, a scene can
be analysed in the wide angle image for global features
(such as the road boundaries) and with more detail in the
enlarged image (e.g., for focussing on objects or obstacles

902

further away). The camera pointing capability allows ac-
tive search and tracking, e.g., for initial self orientation,
motion blur reduction and continuous road tracking while
driving. For obvious reasons it is desirable not to loose the
road from the camera’s field of view when the vehicle
changes its heading or enters a tight curve. Specially for
obstacle recognition it is essential to have the camera
actively center that part of the scene where potential
obstacles are of interest. Instrumental to the success of
’VaMoRs’ were two key elements: the 4D-approach, as
the core of the guidance system, and the BVV 2 for
real-time image sequence processing. In the meantime,
VaMoRs has been reequipped with a more powerful trans-
puter network for both image sequence processing and
situation assessment as well as vehicle control.

3. Perception of the environment

The way of perceiving the environment strongly deter-
mines the kind of intelligent behavior exhibited by robots.
In this section the potential of optical sensors will be
shown.

Sensors generally used for solving the navigational task
can be divided into two categories|Cox, Wilfong, 90]:
First, there are ’dead reckoning’ sensors, which allow the
position of the robot to be estimated by integrating sensor
information over time. Dead reckoning is usually per-
formed by odometry and inertial guidance sensors.
Odometry is the most common form of sensors available
on mobile vehicles equipped with wheels. Using dead
reckoning, position errors may grow without bounds un-
less an independent position fix is used to reduce these
errors. This is where the second category plays its role.
External or environmental sensors are able to provide
information on the surrounding environment. Among the
many sensors and processing schemes that computer vi-
sion has to offer, dynamic vision is the one with the most
potential in perceiving the environment.

The various techniques being investigated for object
detection and tracking can be roughly categorized into a)
edge based using intensity images b) region based using
intensity images and c) region based using color images
[Kuan et al. 86], [Turk et al. 87], [Wallace et al. 86]. The
approach applied here is of the first type as far as the image
processing level is concerned. Though this method might
be considered the most susceptible to real-world distur-
bances like shadows or ill-defined, ambiguous edges, it
has been shown that in combination with a proper guiding
and interpretation mechanism, it is efficient and robust at
the same time..

On the feature extraction level, local, oriented edge
operators both for detection and tracking are used. Corner
finding operators can be realised by searching for adequate
constellations of two edge elements. The edge operators
are entirely software based, running on a standard micro-
processor (8086 or 80286/8 MHz; T222/20MHz transput-
ers more recently). They work directly on raw image




(window) data; no prior signal conditioning or smoothing
is necessary.

A severe drawback of commonly used edge finding
methods (e.g., all ’classical’ operators) is that they are
purely signal driven and lack scene-descriptive criteria;
they treat "right’ and "wrong’ edges, e.g., due to shadows,
equally. Poor performance will usually also result under
the influence of noise or texture, both inevitable in natural
scenes. But even optimized algorithms cannot resolve
ambiguities on the low level, even less so, if they work on
local support only (as on a window). This shows the need
to include more a priori knowledge or to establish some
control mechanisms. In our case the guiding mechanism
for real-time road boundary and object tracking is based
on spatio-temporal scene interpretation utilizing generic
3D geometrical models for the environment and objects,
a known ego-motion model and the laws of central (per-
spective) projection.

Even when considering the relatively simple shape of
two converging road boundaries in the image, there are
many sources of ambiguity and uncertainty under real
world conditions: e.g. there may exist dominant edges
across the road due to shadows, there may be multiple
nearby parallel edges or intermittent stretches without
welldefined boundaries, all additionally blurred due to
vehicle motion (fig.3).

Accepting ambiguity on the low level allows the use of
simple and fast algorithms there (even more so, if only a
fraction of the whole image is processed). Having to
resolve ambiguity or uncertainty then on a higher level
requires that no essential information is withheld or lost
by the low level operations. This, however, will mostly
occur if single, optimal results due to local criteria are
extracted. So, a well balanced approach is necessary to
fine tune the distribution of competence between the signal
driven and the model driven processing levels

Fig.3: Campus road under difficult conditions

As the proper appearance of the road boundaries in the
image can be easily predicted given the observer’s relative
position and the motion state, in the approach used here

local edge extraction is tightly guided and controlled by
the interpretation level; i.e. the interpretation level com-
mands the expected edge direction and location plus some
optional parameters for adapting the algorithm according
to its predictions. In return, it receives a-description set of
several edge candidates in the area with the orientation
sought (fig. 3), plus additional ones from potential edges
with similar orientation in a limited sector around the
commanded direction. These are checked against the ex-
pected edge locations, then the best candidates satisfying
the model criteria are selected for updating the state esti-
mates, or they may be rejected at all if falling outside of
some allowed threshold around the reference position.

The core algorithm correlates an image arca along a
search path within the window with an ideal step edge as
reference pattern. A very efficient implementation of this
technique on a conventional microprocessor has been
originally given by [Kuhnert 85]. Very similar directional
step edge operators are described in [Canny 86], derived,
however, under optimality aspects with respect to shape
and operator width; computational simplicity and effi-
ciency has been less emphasized in the latter case.

A version of Kuhnert’s algorithm with a significantly
improved interface to the interpretation level is being used
here. It is better adapted to noisy real-world scenes and
applies ’bar masks’ with up to 32 discrete orientations,
yielding a directional resolution of down to 6 degrees. Up
to four different edge element (edgel) candidates are ex-
tracted per window, so that for the road boundaries a set
of up to 32 edgels per camera may be passed to the
interpretation level for selection and further analysis.

On an Intel 80286 microprocessor (8 MHz/no wait-
states) it takes less than two video cycles (40 ms) to
subsequently analyse two windows (sized 48x48 pixels)
at different locations for three different edge orientations
and to extract a set of edge candidates for each window.
In the transputer system this step is performed on one 1222
processor within § windows.

4. Intelligent navigation using landmarks

With the definition of intelligent behavior of an auton-
omous system geared to making decisions in response to
environmental events it is logical, therefore, that at least
crude understanding of the task domain is a basic require-
ment. In the following section, the evolution from dead
reckoning to path following and finally to landmark
navigation is presented.

Main sensors for the navigation task performed with
’ATHENE’ have been precision shaft encoders on both
rear wheels and steering, one rate gyroscope for measuring
the turn rate of the robot and one black and white TV-
camera including an image sequence processing system .
Each of the different sensor types has its specific merits,
depending on the robot’s state. The signals of the shaft
encoders are usefull as long as the robot operates on
smooth and well defined surfaces with moderate move-
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ments. Rapid turning of the cart will produce errors partly
due to the unpredictable slippage of the wheels. In this case
the gyroscope carries the best information about the turn-
ing rate, while the camera is too slow to track detected
features. The drift of lowcost gyros prevents using the
signal for a longer period than about one minute, These
measurement errors and perturbations create a discre-
pancy between the planned and the real location. There-
fore depending on the navigational precision required, the
position of the robot has to be updated by visual feedback
[Hock, 91](see fig .4). For this purpose there are two
categories of visual aids to navigation. It will be shown,
that the combination of both will yield a powerful and
stable method for traveling autonomously from point to
point. The first mode is called *path or lane following’ and
has been well proven over a long period of time on the
testbed "VaMoRs’. This approach is tailored to well struc-
tured environments like hallways or paved roads with or
without lane markings. In path following, motion control
by visual feedback is limited to one dimension, the lateral
deviation from the nominal trajectory. Longitudinal con-
trol only affects time but not the spatial trajectory shape.
While driving on aroad, the temporal curvature changes
in a certain look ahead range in front of the vehicle create
a time varying guidance input to the control system. For
road image sequence interpretation the assumption is
made that any change in slope of the road boundaries in
the image originates either from motion of the vehicle
relative to the road, from road width changes, or from
changes in its horizontal and/or vertical direction. Intro-
ducing road curvature as a state variable to be estimated
by a Kalman filter was proposed and realized in [Dick-
manns, Zapp 86] in combination with a dynamical model
of vehicle motion. As high speed roads exhibit linear
changes of curvature over runlength, due to ego-motion
the relations between the curvature parameters can be
formulated as a compact system of difference equations
for sampled data systems. Thus, a dynamical model for
these road parameters also exists. Besides being essential
for high speed lateral and longitudinal vehicle control,
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ter, camera heading Wy
relative to the road direc-
tion and the horizontal and
vertical road curvature
parameters.

There is a difference between autonomous navigation
in hallways and on roads. Hallways are a guidance net-
work with predominantly straight connection lines. The
surface to be travelled on can be considered as a flat and
smooth plane. Therefore, the lateral deviation from the
nominal path can be expressed in terms of lateral distances
to adjacent walls. Any other object with known parameters
for its geometrical description (environmental model) may
serve for this purpose as well. The relative lateral distance
to the object yy and the runlength coordinate then consti-
tute the state variables. Vehicle displacements from the
preplanned trajectory may be caused by misalignments
and odometric errors.

It is clearly seen that the application of following an
indoor corridor is a subset of the more complex road
following task. But as soon as the lane markings disappear
or a decision has to be made with respect to which object
or landmark heading has tobe selected, an areal navigation
method is required. The vehicle now has to travel across
open areas or through extended halls utilizing information
derived from nearby landmarks.

The main difference between path and areal navigation
is that in the first case only topological information may
be needed, whereas for the two-dimensional case the
geometrical relations between landmarks must be known.

The solution for advancing from one landmark to the
next one will be chosen according to the navigation
method seemingly preferred by living beings. In this ap-
proach the absolute distance between two landmarks need
not be known. Therefore, odometry looses importance in
this case. This is similiar to the situation when a person
gives advice on how to reach a certain street intersection.
Explicit information about the distance to the intersection
is not needed if the ability of landmark recognition can be
presumed. A strategy of getting close to the trigger event
must be known, like following the current street. The
missing distance information will be substituted by recog-
nizable patterns, as soon as they getin sight. Since it cannot
be guaranteed that reliable optical information will be
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available, such as known landmarks or the boundaries of
the current path, an intelligent data fusion module is
introduced. It is fed by the output of error models of each
single sensor and the result of the interpretation process of
the scene. In case of ill conditioned optical measurements,
the navigation system is driven entirely by dead reckoning
algorithms (see fig.5). As soon as new landmaiks come in
sight and the estimation process has stabilized, smooth
transition is performed towards a purely optical navigation
method. This switching forth and back is a dynamical
process and leads to a stable and robust navigation system.

5. Maps

As mentioned in the previous section, at least knowl-
edge about topological relations between landmarks has
to be available to the navigation system. This is provided
via databases, which will be called *maps’ in the sequel.
They also contain additional information about the nearby
environment; sometimes it may be advantageous to in-
clude specific parameters for maneuver elements neces-
sary for solving the driving task; these specific maps will
be briefly called ’task maps’ and are handled as separate
units. For improved handling in creating and maintaining
these databases it has proven advantageous to subdivide
the complete set of informations on the environment into
specific maps (see fig.6). The concept of these maps will
be discussed in the remainder of this section.

A map of landmarks contains a network of one-dimen-
sional trajectories and the characteristics of specific trig-
ger events. The information on the entire workspace is not
stored in one single map, but is partitioned into several
distinctive ones. Thus, the complete system of landmark
maps consists of local maps and their topological connec-
tions. Each local map is centered around one landmark or
a tight cluster of landmarks and carries the information
how to reach the adjacent landmarks. The term ’local’
depends on the measurement accuracy available and on
the structure of the environment.

The vision system is conditioned for detecting and
localizing single features, therefore landmarks are con-
sidered as specific groups of features or parts of objects
that exist in the natural environment and that have a stable
geometrical constellation relative to each other. These
landmarks have to be unambiguously detectable by the
vision system. Their features are given qualitatively as a
priori knowledge to the navigation system. Qualitative
aspects and the local 3D coordinates of the landmark
position are given in the landmark map and have a refer-
ence to both the environmental map and the task map.

The environmental map contains information about the
layout of the operational environment. Static obstacles are
stored as well as areas that are prohibited to the robot. For
indoor application the most convenient way to create such
a map is to use digitized blue prints of the building, where
the autonomous navigation has to take place.

The task map has a list of the current job orders. One
example for the interaction of all three maps will follow:
If the job order says ’pick up piece A at spot B and take it
to C’, the first thing to figure out is where the spots B and
C and the current location of the vehicle in the en-
vironmental map are. For the sake of simplifying the
process, it is assumed that the current position and orien-
tation is known and that the procedure for initializing the
system has been done already. Next step is to find the
adequate connections within the network of possible tra-
jectories. Afterwards the vehicle has to travel along a
known hallway at a predefined lateral distance to the wall,
that is safe enough not to bump into objects, which might
hang from the wall. This *wall following’ navigation mode
is maintained until reaching the landmark ’intersection B’.
A short stop which may include a docking manoeuvre
provides the opportunity to pick up ’piece A’. The next
task is, say, to make a 90 degree turn and follow the path
until landmark Cis in sight. So the landmarks ’intersection
B’ and the "object C’ may serve both in global and local
positioning. With a couple of specific landmarks the
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Fig.6: Maps for landmark navigation
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navigation system is able to locate unambigously the
vehicle on the map.

For recording the landmarks one can think at least of
two possible solutions. The first one is to measure manu-
ally the 3D-coordinates of the landmarks relative to a local
reference and store the values into the landmark map. This
procedure implies a Iot of work and is prone to errors. The
second solution is to guide the vehicle by an operator
through the area where afterwards the real mission is to
take place. The operator directs the camera towards an
appearing landmark and a support software determines
how well recognizable by the vision system the landmark
picked is. Essentially, the system applies feature extractors
and some normalization procedures for recognizing image
features relevant to the recognition algorithms (for details
see [Kuhnert 90]). Since the human operator has a sub-
stantially better understanding of the situation, he has to
accept the feature as a landmark before the position can
be stored together with other attributes in the landmark
map. This map may be considered as the logical link
between the task map and the environmental map.

The semi-automatic accumulation of landmarks will
produce rich information on the close surrounding and a
large amount of data which have to be managed in an
efficient way. The process of finding out which landmarks
will be well visible and appropriate during a mission may
be very time consurning. One solution to this problem may
be a computer simulation of the whole setting including a
simulated run of the vehicle. Several criteria for optimiz-
ing the constellation of landmarks are used to filter out
useless objects. Only those landmarks get a stamp, that
yield sensitive information about space and, therefore, are
usefull for the navigation task. After that, the stamped and
well visible landmarks are copied from the original data
base; they now get an event stamp from where and how
long they have been seen. After that, they are sorted in the
sequence as they come in sight during the ride. The relative
position of the vehicle on the map is a pointer to those
landmarks, which are the best for the navigational task.
This simulation of the real mission produces a very com-
pact landmark data base with an event driven search
algorithm. :

During real-time mission performance no extensive
search algorithm is needed, only the event pointer has to
be run along with the distance traveled.

All the prerequisites for succesfull landmark navigation
have been discussed in former sections. The part, that is
still missing, is how to link odometric sensing, perception
of the environment and a priori knowledge to an autono-
mously moving robot. In the next section the well proven
4D-approach will be reviewed. It will be shown that this
approch is a unique tool for integrating different sources
of knowledge to a reliable representation of a robot’s state
relative to its environment,
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6. The integrated spatio-temporal approach

Before going into technical details, some fundamental
considerations are made about the internal representation
of time and space.

A sensor system in the real world always is at a certain
point in space at the one and only *present’ time; this point
intime is part of a continuous “time ray’. A physical object
cannot be at two different locations at the same time. In
order to move from one location to another, energy is
required for ac- and deceleration, and time will go by
because the energy available to effect locomotion is
bounded. These facts constitute constraints on the motion
process which may help considerably when tracking loco-
motion of objects, especially when ac-/ decelarations are
very limited in magnitude as is the case in most of the
occurrences in our natural and even technical environment
(exceptions being bullets shot by guns for example).

Therefore, if we have a good internal representation of
a situation in our environment we are in a much better
position to understand the next image of a real-time
sequence if an internal representation is available which
allows to predict how the process under observation is
going to evolve over time taking certain control or pertur-
bation inputs into account. If this prediction model is
approximately correct one can concentrate the limited data
processing capabilities on the data originating in the local
environment of the predicted spot, thereby making the
sensing process much more efficient; in addition, also the
data processing algorithms may be adjusted to the pre-
dicted situation thereby further increasing efficiency. This
positive feedback favors the evolution of powerful predic-
tion capabilities since in spite of additional computing
resources required for prediction the overall requirements
may be decreased for the same performance level; on the
other hand, completely new performance levels and new
qualities of deeper understanding of environmental
processes may be achievable with this approach.

It might be argued, that human culture and its achieve-
ments are an outgrowth of nature having discovered this
positive feedback during evolution.

In figure 7 qualitative display of internal representation
density over the sliding time axis which moves from right
to left is given. At the point ’here and now’ (shown
stationary at the cross-section of the two orthogonal axes)
sensors provide data on the actual state of the real world.
These data are interpreted taking high-level spatio-tem-
poral world models into account. These dynamical models
are derived from those developed for system design and
analysis in engineering. In addition, it is taken into account
that measurement data usually are superpositions of actual
process states (the desired quantities to be recovered) and
of measurement noise which is to be deleted. In order to
be able to make this distinction, the models representing
temporal behavior have to contain both the *eigen-’charac-
teristics (that means how states change over time when left
on their own) and the response characteristics with respect
to control- or perturbation inputs.
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models is symbolized in figure 7 by the
formation of a reduced tail on the past time
axis (left). Quasi-static knowledge resulting
from this is used lateron for triggering
proper control activities depending on the
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Once this is represented, predictions of the state evolu-
tion over time may be obtained atrelatively low cost. Since
usually neither the control nor the perturbation inputs of
the future are known, prediction usually stops at one cycle
(for the normal prediction-error-feedback state estimation
process) or after only a few cycles in order not to incur too
much uncertainty. For well known feedforward control
time history inputs in order to achieve some maneuver
element (for example lane change inroad vehicle guidance
with a sine-like steering angle input over time using proper
parameters for period T and amplitude A) reliable predic-
tions over longer temporal ranges (seconds) are possible.
Taking standard perturbation statistics into account, even
longer ranges over entire maneuver sequences may be
meaningful (like prediction of the time needed to go from
point A to B). In the average, however, the number of
predicted events will vanish on the future time scale to the
right.

If good internal models are available for generating rich
actual internal representations from the actual data
measured, it will be impossible to store all these data as a
’personal history of adventures’; it is not necessary,
though. Since the time histories of the state variables may
be regenerated from stored initial conditions and control
as well as perturbation time history inputs once a proper
model for the dynamic behavior is available, only the latter
ones need be stored. For these again, instead of pointwise
storing each individual time history, parameterized
generic models would allow very efficient storage since a
dense data input vector may be replaced by a few parame-
ters needed to feed the proper function call. This shows
that proper temporal models may be very efficient in
reducing memory requirements if things are properly or-
ganized. Past process state time histories and events may
then be reconstructed actively from combining only a few
stored historical data with stored model knowledge. This
principle is the basic advantage of the 4D approach com-
bining space and time in an integrated manner.
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tions are counter-acted by feedback control
laws which are implemented by a direct
loop from the sensory data to the corre-
sponding actuators (see center of fig.7) via
internal state variables of recognized ob-
jects; this allows stable behavior under per-
turbed conditions without the explicit
knowledge levels having to interact with the
high frequency data stream. Only unforseen
situations and unpredicted new features dis-
covered lead to an activation of the more
knowledge based hypothesis generation
part controlling the active set of internal dynamical models
(lower left in fig.7).

Seen from this point of view, the entire ’mental’ internal
world of representations has as its purpose to provide the
system with capabilities of data interpretation well suited
for control outputs which enable the system to achieve its
goals; previous experience may be exploited for this pur-
pose contributing to the rating of a system as being intel-
ligent or not.

The 4D-approach

For areliable description of mechanical processesinour
everyday environment science has found the framework
of threedimensional space and time to be well suited.
Objects are defined in this environment as units having
special properties or functions. For simplicity, we confine
ourselves at present to rigid objects which may be moved
as units having constant shape over time (e.g. vehicles,
obstacles) or which are static parts of the environment
(roads,buildings,installations etc.). Each object has a spa-
tial shape, a position and an angular orientation in a
framework relative to the observer, all in 3-D. Objects are
classified according to their mobility: 1. Environmental
objects are fixed to an environment and determine its
visual appearance, like roads, road shoulders, trees and
buildings, walls; 2. static objects are presently at rest,
however, they may be moved or may even belong to the
last class; 3. objects able of autonomous locomotion. The
vehicle itself is an object of class 3, for which a model of
its locomotion capabilities and of some basic geometrical
properties are known. This includes the cause-and-effect
relationships with respect to activating the controls and the
state transition over time. In addition, the position and
orientation of the vision sensor relative to those parts of
the body interacting with the environment, i.e. the wheel
base, are assumed to be known.
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Fig.8: Survey block diagramm of 4D approach

The key tools for integrating space and time in the
internal representation are the dynamical models, which
are used for capturing the behavior over time of a physical
process. As usual in rigid body mechanics, the motion of
bodies is separated into center-of-gravity (cg) translation
and rotation around the cg. These motion components are
described by ordinary differential equations including the
effects of control input. For digital control, transition
matrices and control effect matrices are derived using well
known methods.

Control inputs to the mobile robot carrying the vision
system lead to changes in the visual appearance of the
world through egomotion. The continous motion of the
vehicle and the relative position in the world over time is
sensed by conventional black and white video cameras.
They record the incoming light intensity from a certain
field of view at a fixed sampling rate. By this imaging
process the information flow is discretized in several
ways.

There is a limited spatial resolution in the image plane
and a temporal discretization of 16 2/3 or 20 ms, usually
including some averaging over time. This reduces the data
flow to a sequence of 2D arrays at fixed time intervals (20
ms). Instead of trying to invert this image sequence for
3-D-scene understanding, a different approach by analysis
through synthesis has been selected. From previous
human experience, generic models of objects in the 3-D-
world are assumed to be known in the interpretation
process. This comprises both 3-D shape, recognizable by
certain feature aggregations, given the aspect conditions,
and motion behavior over time. In an initialisation phase,
starting from a collection of features extracted by the low
level pel processing (BVV 2, lower center left in fig.8),
object hypotheses including the aspect conditions and the
motion behavior (transition matrices) in space have to be
generated (upper center left). The motion capabilities of
the robot, which are constraints characterizing the object,
are represented by difference equations, describing the
state evolution. With the belp of these so-called dynamical
models, it is possible to predict the object states to that
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nal 4-D model not only the
actual situation at the present
time but also the sensitivity
matrix of the feature positions with respect to state changes
can be determined and exploited over time, the socalled
Jacobian matrix. This rich information is then used for
adjusting the state estimates recursively in a least squares
manner based on the differences between the predicted
and the measured feature positions. By this approach, the
nonunique inversion of the perspective projection is by-
passed based on the continuity conditions captured in the
spatio-temporal world model (4-D model). For details see
[Dickmanns, Graefe 88] and the references given there.
This approach has several very important practical advan-
tages:

- no previous images need be stored and retrieved for
computing optical flow or velocity components in the
image as an intermediate step;

- the transition from signals (pel data in the image) to
symbols (spatio-temporal motion state of objects) is done
ina very direct way, well based on higher level knowledge,
the 4-D world model integrating spatial and temporal
aspects;

- intelligent nonuniform image analysis becomes possible,
allowing to concentrate computer resources to areas of
interest known to carry meaningful information;

- viewing direction control can be done directly in an
object-oriented manner

- the image processing computer architecture can be
structured modularly according to the internal
representation of spatial objects.

Dynamical model

As mentioned above, it is intented to recover the actual
positions relative to landmarks by measuring their feature
position in a temporal image sequence. The prime interest
within a known planar surrounding is the position
(xB,ys) and the angular orientation (¥) of the vehicle.
Control inputs (Ux, Uy ) result either in acceleration in
longitudinal direction (VB ) or in turning the front wheel




(w). These aspects yield the dynamical model as described
in [Hock 90al.
After linearization and with the help of standard

Fig.9: Dynamical model

methods of modern control theory the discrete state tran-
sition form is derived (see fig.9).

Geometric model

The geometric properties of the scene are exploited in
combination with the laws of perspective projection in
order to describe the position of relevant features in the
image plane as a function of relative spatial state. The
landmarks are modeled as 3D objects with known coordi-
nates of their centroid and the spatial feature distribution
relative to this. The perspective projection equations give

Fig.10: Geometrical model

the horizontal coordinate yp: and the vertical coordinate
zpi of the landmark L; as measured in the image plane (see
fig.10).

Recursive state estimation

The dynamical models link time to spatial motion, in
general. 3D shape models exhibit the spatial distribution
of visual features which allow to recognize and track
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objects. In order to exploit both dynamical and shape
models at the same time, the prediction error feedback
scheme for recursive state estimation developed by Kal-
man and successors in the 60-ies has been extended to
image sequence processing by our group [Wuensche 86;
88]. There are many publications on this approach so that
only a short summary will be given here ( see e.g. the
survey articles [Dickmanns, Graefe 88; Dickmanns, Mys-
liwetz 92]). The Kalman filter approach introduces knowl-
edge about the dynamical behavior of a process, about the
measurement relations and about noise statistics of both
process and measurements in order to obtain best esti-
mates of the process states in a least squares error sense
recursively as new measurement data arrive. Iteven allows
to substitute this knowledge for missing measurements of
state components; these are reconstructed in a way to best
fit the overall model. In the 4D-approach to dynamic
vision, the Extended Kalman Filter (EKF) for nonlinear
systems (see [Maybeck 79]) has been further extended to
perspective mapping as the measurement process; the
reconstruction capability is thereby exploited for bypass-
ing the strongly nonlinear perspective inversion, utilizing
all continuity conditions for spatio-temporally represented
objects in 3D space (shape, carrying well visible features)
and time (motion constraints, given by the dynamical
model, the differential equations of motion).

State estimation, as used here, plays a dual role in the
visual interpretation process:

First, it yields a direct transformation from feature
locations in image sequences into physical quantities in
space (such as x, y, ¥ and their time derivatives), which
are related to control actuations.

Second, when using this approach also the control in-
puts (u) of the vehicle can explicitly be taken into account.
Via known dynamics (state transition matrix @) the sys-

tem’s state x™ at the next sampling time can be predicted,
thus also the expected appearance of landmarks can be

computed as a vector y*. This information is used directly
to guide the feature extraction process where to look for
edges or lines of tracked landmarks.

Only those features matching best the predicted location
will be selected and used to actually drive the interpreta-
tion process. The selection step is augmented by the infor-
mation contained in the estimation error covariance matrix
P. Mapping the predicted uncertainty of the state estimates
into measurement space yields the innovation variance,
which defines the allowed neighborhood of the predicted

values y* in which the new incoming measurements
should lie. Based on this information and by processing
only single measurements sequentially, outliers can be
rejected. This selection capability reduces measurement
noise and is crucial for the robustness of the approach
under real-world conditions.

It should be noted, that the measurement equations have
to be evaluated only in the forward direction, from state
space into the image plane. The non-unique inverse per-




ance, the UD-factorized version of the square-root-filter
is used [Bierman 75]. Details may be found in [Wuensche
88; Mysliwetz 90; Bierman 77; Maybeck 79]. By exploit-
ing the sparseness of the transition matrix in the dynamical
models a speedup can be achieved. Special care has to be
taken in the initialization phase when good object hypothe-
ses are in demand. From feature aggregations which may
have been collected in a systematic search covering ex-
tended regions of the image, the existence of objects has
to be hypothesized.

The general form of a dynamical model for a system of
order n (number of state components necessary to uniqu-
ely specify the system state x(r) with r control inputs u(r))
is, in vector notation

Y= (x, 0 +v (@), 1)

where v (7) is process noise with covariance matrix Q.

The measured variables y, an m-vector, are related to
the state vector x through the nonlinear relation (including
perspective mapping with parameters p)

2

where w (¢) is a measurement noise term with covari-
ance matrix R .
Let @ (xo, 4o, ;) be the linearized transition matrix

y=h(x,p)+w,

from xo, up at #; to xfat t;+1 for the deterministic part of
(1) and C the Jacobian matrix of the deterministic part of

2
_ Sh(x)

X=X

c(x") 3)

P is the covariance matrix of the state variables (n x n)
and KFis the Kalman filter gain matrix (n X m) , then the
EKF procedure may be summarized as follows.

1. During initialization (t = 0) a hypothesis of the
complete state vector and the covariance matrices is given.

Q,R,P'(0), x"(0) 4

KR0)=P*O)-C"{C-P*O)C" +R |
2. The position of each feature in the actual image can be
predicted by forward application of the laws of perspective
projection exploiting a model of the camera used for
measurement.

Y )=n(x").p) )

3. The difference between the actually measured value and
the predicted value multiplied by the Kalman filter gain

matrix KFis used to update the state prediction vector x*
. A

to form the new estimate vector Xx. In case of no

measurement data the second additive term is 0.

(1) =x" () + KRy (1) —y* ()

4. The control input will be determined.

(6)
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u(@m)=-k"-% @) )

5. A state prediction x* (171 ) for the next measurement
can be made, where @ is the state transition matrix over
one sampling period and G is the control effectiveness
matrix for the components of the control vector u.

X (1)=0 - X@)+G-u) 8)

6. The covariance matrix of the actual prediction error is
calculated.

P@)=P" (4)~KF()-C-P* (1) ©
7. Estimation of error covariances P*
P (u1)=0-P@). 0T +Q (10)

8. With the error covariances P* and the Jacobian matrix
C the Kalman filter gain matrix KF is computed.

KFGi1) =P (1) CTCP () CT+ R (11)

9. Set i+1 to i, wait for the new measurement and go to
step 2.

i=i+1 (12)

The current best estimates are the roofed ones () which
originate fromthe expected ones ( * )(eqs. (7,8)) by adding
the measurement innovations with the gain matrix KF.
This matrix is influenced by the covariance matrices @ and
R which give room for filter tuning in order to adjust
convergence behavior (see [Maybeck 79, Wuensche 88,
Mysliwetz 90] for details).

With the information, that is on the one hand gained
from perception of the environment and on the other hand
brought into the system by a priori knowledge, it is made
possible with the help of the 4D-approach to determine the
robot’s state. The next substantial step towards a success-
ful autonomous navigation is a sophisticated guidance and
control system. In the following section our solution to this
problem will be discussed.

7. Vehicle guidance and control

In vehicle guidance and control, the top down com-
ponent of mission realization according to some plan
developed on the basis of a more or less accurate world
model has to meet with the bottom up component of actual
vehicle performance and environment encountered.
Without knowledge about the road network, reaching the
desired goal by controlling the vehicle by chance is un-
likely; however, without watching the sensory input and
comparing it to some apriori knowledge about safe tra-
jectory steering in a local environment, reaching the
desired goal is equally unlikely. The latter case is even
dangerous, while the former one may be an enjoyable ride
when local control is adequate, but with respect to the
intended mission it will be in vain.




Human drivers may be very good at the control level
even in completely unknown environments exploiting
general knowledge about roads and driveways, traffic
rules and traffic participants. Withrespect to guidance, this
is considered a minor problem assuming some basic navi-
gational skills and some local support by knowledgeable
people or correct maps. A similar approach to the overall
problem of performing a mission has been taken for the
autonomous computer-guided vehicles. Safe behavioral
competences in driving have been developed first; the
necessary capabilities for visual landmark recognition and
mission performance are added now.

Intelligent motion control

The 4D vision process yields the full spatio-temporal
state of objects including the spatial velocity components
between objects, if properly set up [Dickmanns, Christi-
ans 89]. For example, in the road vehicle navigation prob-
lem both the road curvature parameters in the look-ahead
range and the state of the own vehicle relative to the road
may be estimated. With this knowledge a state feedback
control law can be applied in order to obtain a lane
following competence of the autonomous vehicle[Dick-
manns, Zapp 86,87; Zapp 88].

In order to make the different options (and maybe
developmental steps) in the evolution of intelligent visual
road vehicle guidance more clearly visible, several stages
of control realizations will be discussed.

Output feedback

The simplest case is a single control lateral guidance by
proportional output-feedback to the steering wheel. The
measured output variable is for example the position of the
dark to bright transition indicating the road boundary in
one or several lines of a TV-image of a camera looking
approximately tangential to the road. If the feedback
coefficients are properly chosen (and probably adjusted to
the vehicle speed) already good lateral guidance in simple
situations can be achieved [Zimdahl et al. 86].

Figure 11a gives a block-diagram description of this
bottom line visual control mode.There is no internal rep-
resentation of spatio-temporal objects; control is actuated
in such a manner as to keep the measured value close to a
predetermined desired one: in our case the position of the
measured image feature close to a position fixed by the
designer.

Implicit notion of state

In the next step towards intelligence an implicitly avail-
able model of the process under control allows much more
flexible control computation. The measured data are
checked against predicted values derived from internal
spatio-temporal models.This allows
1. the elimination of outliers and
2. intelligent data smoothing exploiting known noise
statistics.
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At the core of these recursive estimation methods are
dynamical models of the process under control capturing
their typical behavior over time. The essential internal
variables are directly geared to the physical process in the
real world, i.e. its state. The measured output variables are
thus transformed by the estimation process into state vari-
ables of objects. From this notion, exploiting general
knowledge from systems dynamics, (optimal) feedback
laws can easily be derived. Fig.11b shows the correspond-
ing block diagram.

The control computation in this mode is still rather fast,
although much more involved than in case 12a. Because
of the internal representation of the full physical state of
the vehicle relative to the road, longitudinal and lateral
control can be handled easily; even the cross-influence
from road curvature on acceptable longitudinal speed is
readily taken care of [Dickmanns, Zapp 86,87]. With to-
day’s microprocessors update rates of 25 Hz are easily
obtained using modest parallelisation.

This is a conventional control application not requiring
any special intelligence(except for the recognition of the
object road). The performance achieved by this reflex-like
mode of operation is surprisingly high. Since the underly-
ing model captures all the essential aspects of the real
world process rather well, a large variety of lane following
situations can be handled with just one (possibly adaptive)
feedback law. In this way, a behavioral competence is
realized through this special data feedback structure,

In refined versions of this scheme, the differentiation of
the internal representation into a situation involving
several independently represented objects is of advantage
for more transparency and for obtaining an easier to handle
interface to the human user. For example, in [Dick-
manns 88] the road in the look-ahead range and the own
vehicle have been completely separated yielding a nice
modular structure; however, all of this is completely im-
plicit to the program. Up to this point it is just a con-
venience for the user of the program. In the next step, this
is going to be exploited for improving behavioral com-
petences.

Implicit notion of situations

Once the notion of spatio-temporal objects and their
state is available, classes of relative states among objects
can be recognized requiring similar behavioral actions.For
example, if the road is free of obstacles, the lane following
mode with automatic speed adjustment to curvature may
be run. If, however, an obstacle is encountered, either the
vehicle has to stop in front of it or it may pass the obstacle
if there is enough free space to one side. Figure 11¢ shows
the program structure for realizing this more flexible type
of behavior: In parallel to the state estimation it is
tested,whether there is a candidate for an obstacle on the
road. If this is true, a sequence of actions may be triggered:
The longitudinal control mode running is interrupted (the
lateral one remaining unchanged for the time being) and
the vehicle is put into a deceleration mode either by




another feedback law (e.g. preset decelaration rate) or by
a prestored feedforward control or by a superposition of
both.

In a more refined version of this scheme, the under-
standing of the situation may be differentiated to a more
detailed level. If the road is wide enough and if the size
and the position of the obstacle relative to the road can be
estimated, the autonomous vehicle may be able to decide
by itself whether the obstacle can be passed without leav-
ing the road and touching the obstacle. This check and the
corresponding special control activation can be performed
in several different ways:

a) The simplest one is to have some heuristic test
procedure included in the code which works directly on
image data; if certain patterns are matched the system
could trigger some special control mode (parameterized
feedforward) which guides the vehicle past the obstacle.
This partially intelligent reaction is not very satisfactory
in general; it may, however, be sufficient for certain
applications.

b) A more refined procedural approach determines the
best estimate of the relative state of all objects involved.
This combined state (the obstacle situation) is then ana-
lysed using a preprogrammed classification scheme; as a
result, feedforward or feedback or mixed control modes
may be triggered for passing the obstacle. Special viewing
direction control schemes may be invoked for careful
feedback guidance of the vehicle past the obstacle.

¢) The last scheme will be treated separately in the next
section since it involves explicit knowledge repre-
sentation.

The first two behavioral schemes can be subsumed
under the blockdiagram of figure 11d. Depending on the
number of behavioral rules implemented, relatively com-
plex behaviors may be realized by this approach without
resorting to explicit knowledge representation. It seems
that in biological systems (animals) a similar scheme is
widely used. Very well adapted motion behavior can be
observed in rather nonintelligent species.

Our autonomous vehicle *VaMoRs’, has demonstrated
all its achievements using this rule based, switched direct
feedback control strategy [Dickmanns, Christians 89;
Zapp 88]. Convoy driving on a freeway and ’stop-and-go’
in heavy traffic is the latest achievement using this scheme
[Dickmanns, Mysliwetz 90]. Switching between feedback
schemes with proper smooth transitions is the key to well
adapted motion behavior. There is no direct interdepend-
ence between the number of objects n, the number of
available feedback control laws m and the number of
feedforward control programs 7.

The approach developed is, from a functional point of
view, similar to Brook’s subsumption architecture
[Brooks 87]; however, all the subsumptions are realised in
software based on a full spatio-temporal internal repre-
sentation of relevant objects.This makes the system more
flexible, allows easy changes of concepts and an evolu-
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tionary path to higher developed decision and control
levels including knowledge based reasoning.

Explicit higher order world models

If the number of behavioral modes for different situa-
tions involving many different objects becomes larger and
larger it may become advantageous to structure the be-
havioral competences according to application areas and
classes of situations. The notion of goals to be achieved
becomes of importance during this process. This
developmental step may be the point where intelligence
proper comes into play for autonomous systems since it is
here that reasoning enters the field.

There is no more a direct link between a given situation
and the control mode selection for the lower level in
fig.11d. In the knowledge base there is now a set of goals
for the system determining the decision depending on the
situation. Some cost function to each goal yields a decision
criterion. Which control mode or which parameter set is
going to be applied depends on the actual minimal value
of several cost functions evaluated before decision taking;
those yielding the least cost usually will be the ones
selected. In order to avoid frequent switching in am-
bivalent situations, thresholding or temporal constraints
may be introduced more or less heuristically.

In fig.11e, parallel objects, modes and schemes of
fig.11d are shown for simplicity byrectangular boxes.
They encapsulate the basic cognition and behavior capa-
bilitiesof the system on which the highest knowledge
based level can build and which it exploits for realising its
plans.

By structuring the system in this way there is no need
for steady, especially fast reactions on the highest level
since well trained feedforward or feedback control appli-
cations on the lower levels are supposed to take care of the
continuous fast reaction components. The highest level
just has to do the monitoring and triggering.

Mission performance using landmarks

For the low speed AGV ATHENE the three-level
scheme of figure 11e has been slightly modified and may

be shown as a cascaded triple feedback loop like displayed
infigure 12. In the outermost navigation loop the approxi-
mate direction of the movement is calculated from differ-
ent sources of a priori knowledge, but mainly utilizing the
job order (task map) and the environmental map informa-
tion (see fig.4 and 5). The job order tells the vehicle to
travel from a certain spot to a different location, mean-
while performing some given tasks. The environment map
(e.g. of the building) provides the heading direction, that
is the most convenient course towards the desired destina-
tion. With the help of the implemented simulation of the
whole setting it is possible to determine trajectories free
of collisions with known obstacles. Furthermore, only
those features for navigation will be marked in the land-
mark map, which will be visible during the real mission.
Depending on the operational mode, the reference tra-
jectory parameters are obtained either relative to an object
or as a predefined sub-task. Because of the positional
uncertainty the vehicle may have at the starting location,
the parameters for distance and direction will be corrected,
as soon as the real mission starts and the first landmarks
are in sight. All the long term planning is executed in a so
called mission planner module, which delivers a sequen-
tial list of single mission orders.

At the next level, a pilot-module will take these orders
and produce appropriate parameters for the path control-
ler. Vehicle path tracking is done by calculating a desired
heading angle, based on the mission order and the posi-
tional error. The pilot is responsible for navigation in the
local environment and performs its task together with the
state estimation module within a cycle time of 100 ms.

The control of the steering angle and the velocity of the
cart is performed by monitoring the signals of the gyro-
scope and the odometry. These specific control laws are
implemented on a seperate control computer; therefore,
the cycletime is less than 20 ms.

8. Experimental results

The approach described above has matured during half
a decade of experimentation with two experimental ve-
hicles at the university:

3) slow navigation loop (event triggered)

2) trajectory guidance loop (1 OO'ms)
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Fig.12: Realization of visual landmark navigation
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1. VaMoRs, the experimental vehicle of UniBwM for
autonomous mobility and machine vision, a 5-ton van,
Always inexpensive PC-type computers have been used
for the higher levels: initially, one PC based on the Intel
80286 microprocessor in addition to the BVV 2 with 8086
single board computers sufficed for guiding VaMoRs at
its maximum speed of 96 km/h on an empty Autobahn in
1987 exploiting the 4D approach. Only through the power-
ful and intelligent interpretation constraints introduced by
the integrated spatio-temporal models has it been possible
to achieve these results with that low computing power on
board. Since 1987 Intel 80386 single board computers
have been installed on an intermediate hierarchical level
in the BVV 2 [Mysliwetz, Dickmanns 87] resulting in
much more robust road recognition under strongly per-
turbed environmental conditions through shadows of
trees.

In 1991 all application software developed up to that
point in different computer languages was translated into
C and ported onto transputers. In a transition phase, both
BVV 3 and transputers are used jointly; with the next
generation of transputer processors the BVV will disap-
pear.

Since 1984 active viewing direction control has been
applied in the framework of our vision systems [Mysliwetz
84].1n 1986 it has been implemented for better recognition
of curved roads [Mysliwetz, Dickmanns 86]. The micro-
processor for viewing direction control is since integrated
in the BVV 2. Especially with the introduction of a bifocal
camera pair for better resolution further away this auto-
matic viewing direction control became essential.

2. The vision guided testbed ATHENE was built up in
the year 1990 and is equipped with an almost identical
sensor system as *VaMoRs’ except for the second TV-
camera, but emphasis has been put on autonomous land-
mark navigation. The operational environment has been
provided with landmarks in the form of well discernable,
static objects. Either the global position or the location of
each target relative to the prescribed local trajectory has
been known. The task of the real-time image processing
system was to recognize the object and to deliver the
corresponding measurement data to the navigation soft-
ware. The event driven data fusion filter and a Kalman
filter are used to combine different qualities of sensor data
and to gain the best estimate of the robot’s state.

In case of ill conditioned optical information, the ve-
hicle guidance system is able to travel a reasonable dis-
tance between target sightings. This is a kind of
’instrument flight’, realized with the memorized knowl-
edge about the environment and the egomotion of the
vehicle.

The allowable distance travelled between optical up-
dates is a function of how much drift from the nominal
path is still safe for not colliding with an obstacle and for
finding the next known landmark.

Implementation for the AGV ATHENE started with the
dead reckoning navigation approach. Reproduceable ex-
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periments showed, that it is possible on a smooth surface
to travel over a distance of 20 meters with a lateral error
of less than 1 cm. Another test course, shaped like an oval,
showed that after a 16 meter ride and a 360 degree turn the
heading error was less than 1 degree.

These results have been obtained after putting some
effort into the servo control mechanism. Stable and effec-
tive control laws have been derived to allow accurate and
safe operation of the vehicle. The control system is split
up into different levels in order to have short reaction times
for the vehicle to follow the trajectory commanded. But
on rough ground, dead reckoning by itself does not yield
any acceptable performance,

After implementation of the landmark navigation mode,
ATHENE moved autonomously around the laboratory
area. The course consisted of four hallways with a total
length of about 100 meters and a width of 1.80 meter. Four
90 degree turns connect the hallways. The speed during
an autonomous drive has been between 0.2 m/sec in
narrow corners and 0.5 m/sec in straight hallways. Final
experiments in late 1991 in a factory environment demon-
strated the high precision navigation capability with visual
feedback fromlandmarks. The task to be performed by the
robot was the following (see fig.13): Starting position was
at a roughly known location. The diameters of the error
ellipses were between 10 and 25¢m. After initialization
with an artificial landmark (1) a straight line of work-
benches on the right hand side had to be followed until
reaching landmark (2); it consisted of a left turn corner.
Next landmark (3) was an extremly narrow doorway ( 4
cm free space at each side of the vehicle). A predifined
path in a dead reckoning manner leads to the fourth
landmark (4), which consisted of a closed door. A left tarn
brought the vehicle back tolandmark (1), where it stopped.
Then, a backward docking maneuver was performed to the
starting position. The error ellipse now was less than 5 cm
in diameter. The same course has been performed a second
time after simulating a loading procedure.




9. Conclusions

The overall system architecture for flexible automation
of vehicle guidance based on dynamic vision has been
validated on two different testbeds. The basic sensory
inputs to the system are video signals from CCD-TV
cameras in combination with odometric and inertial sensor
data from the vehicle body. The 4D-approach to dynamic
vision yields a natural way to integrate different sources
of sensor data. The visual navigation methods, path fol-
lowing and landmark navigation, utilize the expectation-
based approach perfectly by exploiting prediction error
feedback with full spatio-temporal models for servo-main-
taining an internal representation close to the real world
objects. Both methods may be used in a complementary
or an exclusive mode. In experimental results it has been
shown that the combination of both yields very robust and
precise navigation capabilities for an autonomous vehicle
through structured environments.
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