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ABSTRACT

Highly time-constrained robot vision applications require a careful tuning and optimized interaction of a system’s
components hardware, algorithmic complexity, software engineering, and task performance. The high accuracy
processing of full-frame image sequences for image analysis and object space feature positioning is very time
consuming. In both of these processes, sequential estimation algorithms offer valuable alternatives to
simultaneous approaches. This paper introduces an efficient estimation algorithm based on Givens transformations
for use in point positioning and updating camera orientation data. In a test, an easy-to-use standard vidco camera
has been applied for image frame gencration. The results of camera calibration and an accuracy test using a 3-D
testfield are presented. The computing times of sequential point positioning and camera orientation are given and
in part compared to the values for the simultancous adjustment. This clearly indicates the superior performance of

the sequential procedure.
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1. INTRODUCTION

Image sequences play an important role in photogramme-
try, machine vision and robot vision. While in classical
photogrammetry, especially in aerial applications, data ac-
quisition and processing is largely separated, this is not
the case any more in modern applications where non-pho-
tographic sensor technology and digital processing tech-
niques are employed. Fast methods for data reduction are
required, in particular, in highly time-constrained robotics
applications, but are also very often of advantage in less
time-critical machine vision and digital photogrammetric
projects. The classical data reduction process consists of
the two major stages image measurement and 3-D point
positioning, These process components arc in gencral sep-
arated from each other. In each case, simultancous algo-
rithms can be reformulated into sequential form for better
time performance.

In image processing well-known sequential formulations
exist for incremental convolution operations (used in line-
ar filtering, resampling, image pyramid gencration, etc.);
in image analysis they are applied in the pixel location
transformations in orthophoto production (Baltsavias et
al,, 1991) and in form of the Kalman filter in the tracking
of line segments in image space (Deriche and Faugeras,
1990).

A well known example is that of on-linc triangulation us-
ing sequential estimation techniques in point positioning
with acrial photographs. Here the computational proce-
dure of on-line bundle triangulation is closely tied to the
image coordinate measurcment process of a human opera-
tor. The main purpose of this fast scquential cstimation is
that of blunder detection at an carly stage of the measure-
ment process with the utilization of quick remeasurement
possibilities and better blunder control capabilities. Im-
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portant characteristics of this application are, on the one
hand, the constantly varying size of the state vector (“so-
lution vector” in least squares adjustment terminology) of
bundle adjustment consisting of the exterior orientation
parameters of photographs, the object point parameters
and possibly additional parameters for self-calibration.
On the other hand, the full covariance matrix of all system
parameters is, if at all, only needed at the termination of
the process. A third distinctive characteristic are the high
and typical sparsity patterns of the matrices involved in
the estimation procedure (design matrix of observation
equations and normal cquation matrices of lcast squares). -
Given these system characteristics a number of scquential
estimation algorithms have been compared to each other
in the past. Firstly, the TFU algorithm (Triangular Factor
Update), which updates directly the upper triangle of the
reduced normal equations, was found to perform much
better than the Kalman form of updating both in terms of
computing times and storage requirement (Gruen, 1982,
Wyatt, 1982). Later, the Givens transformations were
found to be superior, in general, to the TFU (Runge, 1987,
Holm 1989) both in computational performance and in the
ease of mechanization and software implementation. In
the meantime the Givens algorithm has been implemented
in a number of systems (Edmundson, 1991, Kersten et al.,
1992). Already in the mid 80’s, Gruen (1985a) envisioned
semi-automatic or {ully automatic digital rcal-time trian-
gulation systems for the future. We argue nowadays that
machine vision and in particular robot vision could draw
substantial advantages from these sequential approaches.

This fact has been obviously acknowledged by the com-
puter vision community, where, among others, two recent
developments are of particular intcrest. In Matthies et al.
(1989) the Kalman filter is used to estimate a depth map
from image sequences. Typical for this approach is that




depth estimates and uncertainty values are computed at
each pixel of minified (256 x 256 pels) video frames and
that these estimates are refined incrementally over time.
The good performance of the Kalman filter is due to the
fact that only one parameter (depth value) constitutes the
state vector and is updated. Errors in orientation and cali-
bration of the video frames and thus correlations between
different elements of the depth map are not considered.
Also, only lateral motion of the CCD-camera is assumed.

Zhang and Faugeras (1990) use the Kalman update mech-
anism to track object motion in a sequence of stereo
frames. They track object features, called “tokens” (line
segments for example) in 3-D space from frame to frame
and estimate the motion parameters of these tokens in a
unified way (they also integrate a model of motion kine-
matics). Their state vector consists thus of three angular
velocity, three translational velocity and three translation-
al acceleration parameters of each object and in addition
six line segment parameters for each 3-D line representa-
tion. As before, the tokens are treated independently here,
which allows the state vector for estimation to remain
small in size and may result in straightforward paralleliza-
tion for any number of tokens.

Although we are aware that very fast (e.g. video rate 25
Hz) solutions to tracking problems with affordable com-
puter hardware still require substantial simplification of
the measurement problem at hand, we nevertheless
present in this paper the genceral solution for sequential
point positioning, based on the bundle solution. The solu-
tion is object point-based. Other features may be derived
from these 3-D point measurements. Any simplification in
measurement arrangement, as for instance non-moving
sensors, may readily be derived from the general concept.
Our solution may include self-calibration parameters for
systematic error modelling and statistical tests for blunder
detection. The sequential estimation procedure applies
Givens transformations for updating of the upper triangle
of the reduced normal equations (Blais, 1983, Gruen,
1985a). We use Givens transformations as opposed to a
Kalman update because in robotics the covariance update
of the parameter vector is not required at every stage and
then, if at all, only at relatively sparse increments. Morco-
ver, the varying size of the parameter vector (addition and
deletion of new object points, addition of frame exterior
orientation parameters) leads to very poor computational
performance of the Kalman filter.

The presented approach treats only the 3-D point position-
ing problem in a sequential mode. A combination of sc-
quential algorithms in 2-D image measurement and 3-D
object point positioning within one unique system is feasi-
ble and meaningful, if for instance MPGC (Multiphoto
Geometrically Constrained) image matching, which de-
livers simultaneously object point coordinates, is execut-
ed for full frames in a pixel-by-pixel (iconic) mode. Also,
a complete bundle solution with integrated image match-
ing could be based on this concept. Another generaliza-
tion is possible if moving objects are included in the
system,

In scction 2, a brief description of the Givens trans{orma-
tions as applied to sequential bundle triangulation with
static object points is given. Section 3 presents a test ex-

ample using real image data produced with an arbitrarily
moving video camera over a 3-D testfield.

2. SEQUENTAL ESTIMATION IN BUNDLE
ADJUSTMENT WITH GIVENS
TRANSFORMATIONS

In this section we will present the formulae of Givens
transformations as applied to sequential estimation in
bundle systems in a concise fashion. For a more compre-
hensive treatment compare Blais (1983), Gruen (1985a),
Runge (1987), and Holm (1989). In the following our
functional model for bundle adjustment will be set up
without the inclusion of parameters for self-calibration.
An extension by these parameters is straightforward and
does not alter the considerations and conclusions present-
ed here.

2.1. Least Squares approach for estimation

The Gauss-Markov model is the estimation model most
widely used in photogrammetric linear or linearized esti-
mation problems. An observation vector I of dimension n
x 1 is functionally related to a u x 1 parameter vector x
through

l—e = Ax . 1)

The design matrix A is an n x u matrix with n = u and
Rank (A) = u. There is no nced to work with rank-defi-
cient design matrices in on-line triangulation. Rank defi-
cient systems, caused by missing obscrvations, generally
do not allow for a comprehensive model check, Observa-
tions should be accumulated until the system is regular
and can be solved using standard techniques. For rank de-
ficiency caused by incomplete datum, see Gruen (1985a).
Sequential least-squares estimation with pseudo-inverses
is very costly (compare Boullion, Odell, 1971, p. 50 ff).
The vector e represents the true errors. With the expecta-
tion E(e) = 0 and the dispersion operator D, we get

E() = Ax (2a)
D() =Cy=02P" and (2b)
D(e) =C,, = Cp. (2¢)

The estimation of x and o% is usually attempted as unbi-
ased, minimum variance estimation performed by means
of least squares, and results in

-1
parameter vector £ = (ATPA) ATPI, (3a)
residual vector v = AX—1, (3b)

T
L2
variance factor &, = d fv, r=n-u, Bo)

The architecture of A is determined by the type of triangu-
lation method uscd. As explained previously we chose the
bundle method for the purpose of generality and rigidity.

For bundle adjustment, Equation (1) can be written as
—e = Ax+Ay-1; P (4a)
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where

x is the vector of object point coordinates,

t is the vector of orientation elements,

Aj and A, are the associated design matrices; and
e, ], and P are the true error vector, constant vector,
and weight matrix for image point observations,
respectively.

x and ¢ are considered here as unconstrained (free) param-
eters. If observations are available for some or all of the
object point coordinates, a second system of observation
equations is added, that is

-e, =Ix-1; P (4b)
Similarly, observations for the oricntation elements would
add

(40)

The least squares principle, applied to Equations (4a),
{(4b), (4¢) leads to the combined minimum

~-e, = Ix-1,; P,

VIPy+vIP v, + v,TP,v, = Min.

c” ¢

)

For the purpose of simplicity and without loss of generali-
ty, we will operate in the following derivations only with
the reduced minimum principle

[

vTPv=>Min,

that is, we will consider only Equation (4a) as observation
equations.

The resulting normal equations are of the form
N £ NXX le i
? N rt NII ?

with
N, =ATPA, , 1.=ATPI
N,=ATPA,, 1,=A}PI

©)

N,=AIPA,.

N is further assumed to be regular. In an off-line environ-
ment Equation (6) is usually solved by applying Gauss or
Cholesky factorization. The former can formally be de-
scribed as a LU factorization, decomposing N into a prod-
uct of lower and upper triangular matrices L and U, i.e.,

of 1)

or, with L = UT™D (D is a diagonal matrix), in the alter-
nate formulation

-l

M

~> M

UTDU{ ®

-~
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After the reduction of the right hand side, the solution
vector is computed from

-]

by back-substitution.

In photogrammetric triangulation the factorization is usu-
ally done as a stepwise procedure, stopping the reduction
of N right before it enters what was originally the N,, ma-
trix. This procedure leads to the pre-reduced normals Np,
ie.,

©

with Ny = N,,— NIN;IN_, and

IR = ll_N: x;Ix‘

N, is finally factorized to an upper triangle Ny, and ¢ is
obtained by back-substitution from

(11)

The mechanization of this off-line factorization algorithm
takes advantage of the fact that N, is a block-diagonal
matrix with 3 x 3 submatrices along the diagonal. There-
fore, the reduction of the point coordinates can be done on
a “point by point” basis, leaving the structure of the N,
and N, matrices unchanged, i.e., producing no new fill-
ins in those matrices. This particular feature, based on the
structure of N_,, is the key to a successful application of
the Triangular Factor Update technique in on-line triangu-
lation.

Assuming a sequential process and interpreting Equation
(4a) as the status of the measurement system at stage k-1
of the process, we get the following system if one or more
image coordinate observations arc added, including new
parameters x ;) and £y : '

—e=Ax+A,—-1; P
t

X
~€w = A [x } +A2(k)[
) 0

t,J— Ys Py

The updated normal equations of the stage k are of the
form

(12)

(13)

and




; (0 T

* i (0) T ’

N= Nxx Nxﬂ
'T .
er NN
Ny =N + 4T, P AT
xx = Ny LR (1R,

— a0 T T
Ny =N, +A1(k)P(k)A2(k) ,and

; 0) | 4T T
Ny=Ng +A P mAzg -

The superscripts (0) indicate that, if new parameters
Xy and ¢ ,, are added, the column/row spaces of the orig-
inai N, SV),,, and N,, matrices have to be extended by

zero vectors and the row spaces of the original vectors and
by zero elements accordingly.

The updating of the k - 1 stage normals can be described

as
% _ LAl
: L+Al
The addition of the term AN to the k - 1 normals will re-
sult in alterations of the matrix factors L and U, i.e.,

x} = (L+AL)'1’?"+AI’1 - (15)

t (T AL

(N+AN) [ (14)

(U+AU) [

2.2. Sequential treatment with Givens
Transformations

Sequential estimation with orthogonal transformations us-
ing QR decomposition is described in Lawson and Han-
son (1974). Both additions/deletions of column and row
vectors of the A matrix are discussed there. Householder
transformations as well as Givens rotations are used. Blais
(1983) recommended the application of Givens rotations
for the sequential treatment of surveying and photogram-
metry networks. Our approach uses the estimation model
(Equation 4a). Instead of obtaining the updated upper tri-
angular matrix (Equation 15) by means of Gauss factor-
ization of the normal equations, it applies Givens
transformations directly to the upper triangular matrix U
of the previous stage. At stage k-1 the reduced system
(Equation 9) takes the form

U[":‘ o 2
1 L

Adding onc observation equation, including a sct of new
parameters y, to this system results in stage k and gives
(with Py = 1)

®

Uio | 4 d
=] (16)
aly |Ly Loy
in which

Y  is the new parameter vector of length p,

a?k) is the row vector with the coefficients of the new
observation equation, and

is the right hand side of new the observation
equation.

I(k)

Applying a series of orthogonal Givens transformations
G, an

(n is the total number of system parameters)
to Equation (16) results in

G= Gran—l PPN

U0 tn=p U } n
Gloo po=| , (18a)
afk) 11 o 1
N d._ tn-p d n
G| 0 o o= , (18b)
I(k) 1 Lk 11

The updated solution vector can be found by back-substi-
tution into

U (19)

<oy ™y ¥y

The sparsity patterns of both U/ and af,c) can be exploited
advantageously in order to speed-up computations.

If a covariance matrix of the parameters has to be updated

essentially the same approach can be followed as for the
updated parameters. Another option is to derive it from
the upper triangle U using Equation (14) in Gruen
(1985a).

Methods for the deletion of observations and the addition
and deletion of parameters are described in Golub (1969)
and Lawson, Hanson (1974). Some of these methods fit
nicely into the mechanization of the Givens approach. De-
letion of observations can be handled by introducing these
observation equations with negative weighis into the
standard format (Equation 16). Complex arithmetic is
avoided in computations.

For the deletion of parameters one simply cuts out the cor-
responding columns of the upper triangle U and trans-
forms the remaining matrix to upper triangular form with
Givens matrices. The transformation of vector d is also
necessary.

The variance factor can be updated either through explicit
computation in Equation (3¢) after the “new” residuals
have been determined or through a sequential approach
using the Givens transformations. Lawson, Hanson (1974,
page 6) have shown that

Q= 0"P'"? = dla, (20)

with dj being derived from the factorization of the obser-

vation Equation (4a) as
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GP'?[4, 4) = B:I GPYY = jl : @1
2

Hence &2 = Q2/r can easily be derived from the lower
portion d, of the transformed right hand side of the (k -
1) stage of the system,

The sequential updating of £ can be achieved by simply
adding Q to d and updating Q with Givens transforma-
tions (Gentleman, 1973).

U U d d
G| 0 |=]o0l, GlQ|=]|g] 22)
aty 0 Loy 0

For blunder detection, which is particularly important in
automated measurement systems, Baarda’s data snooping
has become standard. The computation of the related test
criteria w; = —v;/0_,(i=1,...,n), requires the compu-
tation of both the residual vector v and the diagonal ele-
ments of the Q,,-matrix. In Gruen (1985a) it has been
shown how the full Q,,-matrix can be efficiently comput-
ed or updated both with the Givens and the TFU ap-
proach, In practical operations, we clearly prefer the
method of “unit observation vector” (Gruen, 1982), be-
cause in the process of on-line triangulation only a rela-
tively small number of selected residuals have to be tested
at any given stage. An operational procedure for blunder
detection and deletion of gross erroneous observations in
the case of non-diagonaldominant Q,,P-matrices and, if
the suspicion exists that more than one blunder is in the
data at a given time, was suggested in Gruen (1985b). Af-
ter each deletion of an observation the remaining residuals
and the estimated variance factor are updated in a recur-
sive fashion and tested again in order to get rid of the in-
fluence of the rejected observation.

3. PRACTICAL EXAMPLE

The software package OLTRIS (On-Line Triangulation
System, see Kersten et al., 1992 for description), which

was developed for the US DoD (Department of Defense),
is used for the computation of the sequential estimation
operations in the practical example of this section.

Figures 1 and 2 show our 3-D laboratory testfield which
served as the test object to be imaged by our (simulated)
robot, equipped with one CCD-camera. In fact, instead of
a robot, a human operator “filmed” an image sequence
with a JVC video camera GR-S77E (S-VHS).

Figure 1: 3-D testfield used for on-line triangulation

07775647777 %

(a) Dimensions of the testfield
and camera path (planview)

26m .

(b) Dimensions of the testlicld and illustration of the used camera path for acquiring the test sequence

Figure 2: Dimensions of the testficld and camera path




This “amateur” video camera (Fig. 3) was intentionally
used instead of an industrial CCD-camera, because of its
ease of operation (e.g. viewfinder for optimal object cov-
erage, internal compact video cassette for immediate data
storage of very long image sequences). Table 1 shows
some of the technical specifications of this camera.

Figure 3: JVC video camera GR-S77E

Table 1: Relevant technical specifications of the JVC
video camera GR-S77E

JVC video camera GR-S77E

Super VHS System for record and play mode
High resolution 1/2”’-CCD-Chip (420 000 pixels)
Focal length 8.5 - 68 mm, 8x zoom lens

Auto focus
Variable electronic shutter 1/50, 1/250, 1/500, 1/1000 sec
Weight 1.2 kg

3.1. Image frame generation

The recording “flight” path of the video camera is illus-
trated in Figure 2a and 2b. The sequence of the 3-D test-
field was recorded in two strips, moving the “robot”
parallel to the testfield at an approximate distance of 3.6
meters from the wall. While recording the images, the
auto focus was switched off and the camera was focused
at infinity, With the focal length of the camera fixed at 8.5
mm, the depth-of-field can be assumed sufficient for sharp
imaging of the object. 53 seconds of the scquence have
been chosen for digitization. The imagery was digitized
with a VideoPix framegrabber on a SPARCstation 1+

(Sun Microsystems). The generated image frames were
pre-processed with a low-pass filter (3 x 3 average). The
effective size of each digitized image was 720 (H) x 575
(V) pixels. Altogether 90 image frames were generated
giving a rate of 1.8 images per second of the sequence or
one digitized image every 0.6 seconds. Due to blurring ef-
fects caused by image motion, two image frames were left
out of the digitized sequence. Figure 4 shows three frames
of the complete sequence (enhanced with a Wallis filter).
The original visual quality of the frames is not very good.
Radiometric and thus geometric distortions due to motion
blur, analog video cassette storage, and frame grabbing
with PLL line-synchronization are visible if imaged at
larger scales.

3.2. Camera calibration

Before measuring image coordinates and processing data
in OLTRIS, the video camera was calibrated. In the cali-
bration, additional parameters including parameters of in-
terior orientation, x-scale factor, shear, and radial and
decentering distortion were determined. Investigations
into the calibration of CCD-cameras are described by
Beyer (1992). The respective software has also been used
here.

In addition to the test sequence, images were acquired for
calibrating the JVC. The 3-D testfield was imaged from
four different camera positions. The pixel coordinates of
the testfield targets were determined by least squares tem-
plate matching (LSTM), while reference coordinates for
the targets were obtained by theodolite measurements.
Measuring some well-distributed points in the four imag-
es yielded sufficiently precise approximations for the ex-
terior orientation of the four images by resection in space.
Using this data and the known object point coordinates,
approximate image coordinates could be computed. These
were used as initial values for antomatic least squares
template matching of 130 points in each image. In this
test, LSTM was capable of measuring seven targets per
second including screen-display with an average precision
of 0.33 um (1/33 pixels) in x and 0.29 pm (1/35 pixels) in
y.

The observations were processed in a bundle adjustment
with self-calibration. The measurements and adjustment
was performed in DEDIP (Development Environment for
Digital Photogrammectry, Beyer, 1987), which is a part of
the Digital Photogrammetric Station DIPS II (Gruen and
Beyer, 1990). The results from the bundle adjustment and
the comparison with check points, as an independent veri-
fication of the accuracy, are shown in Table 2. Version 1

LeRE
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Figure 4: Three frames (no. 10, 15, and 20) of the video sequence (enhanced with a Wallis filter)




Table 2: Results of the bundle adjustment with self-calibration for the video camera calibration

Precision from adjustment Accuracy from check points
Ver| Im |AP|Co|Ch| 1 [60] Object space [mm] Image space [Um] Object space [mm] Image space [pum]
Hm

ox Sy 6z Ox Oy Mx Ky Mz Hx Hy
114 19]3172]605]096| 045 | 0.50 | 0.85 1.2 1.3 0.60 | 0.53 | 0.87 1.6 14
214 19[8]67]622]1.02] 028 | 027 | 062 | 08 0.7 041 | 030 | 0.76 1.1 0.8
Ver..... ... Version
Im...... ..Number of images Oy - ..Standard deviation of measured image coordinates a posteriori
AP. ...Number of additional parameters oxyz ..Theoretical precision in object space
Co.. ....Number of control points Oyy - ...Theoretical precision in image space
Ch.............Number of check points Uxyz ...Empirical accuracy in object space
| SR Redundancy My sesecessnneenns Empirical accuracy in image space

summarizes the results of the calibration with a minimal
control datum (three control points on the wall). In ver-
sion 2, eight well-distributed control points on the wall
and testfield frame were used in the adjustment. The em-
pirical accuracy measures (lx, [y, Hz) shows that an ac-
curacy of better than one millimeter was obtained.

An accuracy in the order of 1/10® of the pixel spacing in
image space could be achieved. The camera constant was
determined as ¢ = 10.337 mm, and the pixel spacing as
10.9 pm (H) x 10.0 um (V). The curve of radial distortion
of the JVC is illustrated in Figure 5. The 6.4 x 4.8 mm?
sensor of the JVC is affected by a maximum distortion of
-57 pm at the sensor border.

=10 -
=20 —
=30
=40 —

Radial distortion [pm]

3
o
=)

1

]
@
©

T I
1 2

1
Radius [mm]
Figure 5: Radial distortion of the JVC video camera

3.3. On-line triangulation

In OLTRIS, the image sequence was triangulated to dem-
onstrate the performance and capability of sequential ad-
justment for point positioning purposes. As mentioned
earlier, the triangulation was processed without sclf-cali-
bration. The image coordinates for the object points in the
88 images were determined in a similar fashion as de-
scribed above for the camera calibration. Known data at
the start of the triangulation included the station orienta-
tion data of the first image (introduced as initial values)
and five distributed object points of the testficld which de-
fined the datum. After including a new frame into the tri-
angulation process, at least three points have to be
measured to compute the approximate values of the exte-
rior orientation of the “current” camera position. These
orientation values of each consecutive image in the se-
quence were computed by resection in space using the ori-
entation data of the preceding image as initial values. In
each image, between 79 and 146 points were measured. A
total of 166 different object points in the testfield were
used. In total, 20 860 obscrvations (498 object and 20 362
image point coordinates) were processed with a maximum
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number of 1026 unknowns to be determined in the bundle
adjustment. The path of the video camera for the test se-
quence is plotted in Figure 6. The lower line represents

Y [mm]
1650 End
1400
1200 Start
1100 —y T T T T r X
4000 4500 5000 5500 §000 6600
[mm]
Z [mm]}

4400
4300
4200

4100

4000 T

T T T
60 70 ao 90

Number of frames

Figure 6: Path of the video camera

the estimated path (i.e. exterior orientation of the 88 imag-
es) as determined by OLTRIS (with sequential estimation
and simultaneous adjustment inbetween). The upper line
indicates the “path” as estimated in a (simultaneous) bun-
dle adjustment with self calibration in DEDIP. The mean
of the differences between the two paths is 4.5 mm in x-,
and -11 mm in y-, and 12 mm in z-direction. This differ-
ence can be attributed to the absence of systematic error
compensation in the sequentially estimated version.

The important comparison to be made here between the
two adjustment techniques, simultaneous and sequential,
relates to their respective computation times (CPU) for
updating the normal equation system and calculating the
solution vector. In OLTRIS, it is possible to perform se-
quential update with Givens transformations and simul-
tancous adjustment with Cholesky factorization and back-
substitution. Computing times (CPU) for the updating of
the solution vector when including the observations of
one additional image point are illustrated in Figure 7. The
plotted line shows the increase of CPU-time consumption
depending on the number of frames, observations and un-
knowns respectively. The computation time measured was




20T rrrTT T T T [Ty [T T AL T T
g 18 -
3 1.6 N
& L
% 1.4 2
E I h
—a 1 2 - |
g L
= 1.0 -
=} » -
g 0.8 :" “:
Q‘ pe—
@ 0.6 — ]
e n
g 0.4 — —_
S 0.2k N
0.0 I, [T [P [ [ [ Lo esaain [ i
0 10 20 30 40 50 60 70 80 90
Number of frames
L | | 1 | | I I | ]
460 2726 5178 7246 9437 12056 14198 16604 18580 20860
Number of observations
il | ] ! ] ] ] ] 1 ]
282 510 570 624 693 792 852 906 966 1026

Number of unknowns

Figure 7: CPU-times for the inclusion of one additional image point into the sequence.
(Sequential estimation in OLTRIS on a SPARCstation 1+, Sun Microsystems)

between 0.01 seconds per additional image point meas-
urement at the start phase of the triangulation and 1.54
seconds at the stage of the last frame of the sequence. In
comparison with these results this speed could not be
achieved with simultaneous adjustment. Here, the normal
equation system is relinearized, if the updating of the so-
lution vector is requested after adding an image point
measurement into the normals. For that, forming and solv-
ing the normal equations during the triangulation takes 3
seconds per iteration at the stage of 10 introduced image
frames including 2726 observations and approximately 20
seconds at the stage of 40 frames (9437 observations).
This is approximately by a factor 70 worse than the se-
quential mode and is far away {rom video real-time.

4. CONCLUSIONS

Our investigations have shown that sequential estimation
in a general point positioning and camera orientation
module (bundle adjustment) using Givens transformations
can result in very short response times for system updat-
ing. In our example the insertion of one additional image
point required 0.01 seconds at the stage of the first CCD-
frame and 1.54 seconds at 88 frames on a Sun SPARCsta-
tion 1+. The simultancous solution required by a factor 70
higher computing times. Thus within this computer envi-
ronment, an image point insertion (and deletion) at video
rate (0.02 sec) can be achieved at a system size of 10
frames. This excellent computational performance makes
the procedure of sequential updating of bundle systems by
Givens transformations particularly useful in time-con-
strained machine vision and robot vision applications.
From a system point of view, however, object space fea-
ture positioning may be only a minor portion of the over-
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all computing time budget. Since image analysis and
image understanding operations can easily chew up a
large amount of computing time, it should be worthwhile
to investigate also into possible sequential formulations of
related algorithms,

As a by-product of our investigations we could show that
even with an “amatenr” TV video camera with integrated
analog storage device a fairly good accuracy (1/10% of a
pixel from 3-D check points) can be achieved. We believe
that even better accuracies are possible if emphasis is put
on a more sophisticated procedure for systematic error
compensation. This opens interesting perspectives for the
use of TV video cameras in a great variety of measure-
ment applications.
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