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ABSTRACT 

Identification of cloud types through cloud classification using satellite observations is yet to produce consistent 
and dependable results. Cloud types are too varied in their geophysical parameters, as measured by satellite 
remote sensing instruments, to provide for a direct accurate classification. To aid in classification, texture 
measures are additionally employed. These measures characterize local spectral variations in images. They are 
widely used for image segmentation, classification, and edge detection. Numerous methods have been developed 
to extract textural features from an image on the basis of spatial and spectral properties of the image. In our effort, 
several of these methods are studied for their applicability in cloud classification and cloud feature identification. 
The examined texture methods include a) spatial gray-level co-occurrence matrices, b) gray-level difference vector 
method, and c) a class of filters known as Gabor transforms. Methods a) and b) are spatial and statistical while 
method c) is in the frequency domain. A series of comparative tests have been performed applying these methods 
to NOAA-A VHRR satellite data. A discussion as to the suitability of these texture methods for cloud classification 
concludes this study. 
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INTRODUCTION 

Identification of cloud types by automated cloud classifiers, 
which operate on a pixel by pixel basis, has yet to show 
dependable and accurate results. Clouds have geophysical 
parameters which are too inconsistent, as measured by satellite 
remote sensing instruments, to provide for a direct accurate 
classification. No method developed to date provides a 
reliable spectral signature which would uniquely identify a 
specific cloud type anywhere on the Earth globe during any 
season. Cloud types vary in their spectral response at different 
latitudinal locations and at different times of the year. These 
variations complicate methods required for cloud type 
identification using remote sensing techniques. 

Surveying the various available statistical, structural, and 
frequency domain techniques applied to cloud classification, it 
appears that there are not enough parametrization vectors to 
uniquely separate anyone cloud type. For this reason, texture 
analysis methods are drawn upon in addition to aid in this 
problem. The use of texture parameters has been reported on 
extensively in recent literature (Wechsler, 1980). Texture 
techniques used in our study include a) spatial gray-level co­
occurrence matrices, b) gray-level difference vector (GLDV) 
method, and c) a class of filters known as Gabor transforms. 
Each of these approaches has unique merit for providing 
additional information about cloud masses within a scene. 
These unique differences are the focus in this study. 

Images in this case study are composites of Advanced Very 
High Resolution Radiometer (A VHRR) channel one and 
channel four. Pixel by pixel classifications of cloud types, 
based on the spectral and spatial responses from these 
channels, are enhanced with results from the various texture 
analysis algorithms. Results of the classifications from the 
combined techniques are compared and discussed. 
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DATA 

An image from the Gulf of Alaska was chosen for this work. 
This region was selected due to its high latitude which presents 
challenging solar zenith angles. It also provides snow within 
the scene which tests snow and cloud separation capabilities of 
the candidate methods. Furthermore, the general 
meteorological activity within this region is high thereby 
presenting a continuous varying source of frontal cloud 
masses. 

The scene selected for presentation is one of eight images used 
in this study. It is an A VHRR image from 15 October 1988, 
19Z. A full resolution (1.1 km per pixel) sector of 1024 by 
1024 ten-bit pixels was extracted from the original 2048 by 
2048 data set. 

The channel one and channel four radiance images are shown 
in Figures 1 and 2. The channel one image is histogram­
equalized for purposes of display. The channel four image is 
inverted so as to represent clouds in lighter gray shades. 

The large band of clouds in the extreme right of the image is a 
frontal cloud mass that has previously moved through the area. 
This cloud mass is characterized by high thick cirrus over 
cumulus. These clouds are brightened by their height as well 
as by the low sun angle which is characteristic for this 
northern latitude. 

In the lower central portion of the image are well defined cloud 
streets. They are trailed by open cell stratocumulus and 
altostratus that extend to the left center of the image. The 
mixed layered cloud mass in the lower left portion of the image 
represents stratus and altostratus with a cover of thick cirrus. 
Some closed cell stratocumulus are at the bottom of the image 
between the stratus and frontal clouds. 



Snow can be seen in the upper central portion of the image. 
Typically, snow will be observed to have a dendritic-like 
structure which distinguishes it from cloud masses. 

TEXTURAL METHODS 

Texture is a term used to characterize the surface of a given 
object. It can also be applied to an image of a phenomenon. It 
is undoubtedly one of the main features drawn upon in image 
processing and pattern recognition. Texture analysis plays a 
fundamental role in classifying objects and outlining 
significant regions of a given gray level image (Wechsler, 
1980). Despite its ubiquity in image data, though, texture 
lacks a precise definition. Some definitions characterize 
texture as visual images which possess some stochastic 
structure. Other definitions describe texture as an attribute 
generated by a local periodic pattern. Whatever the definition, 
most algorithms which derive texture from an image fall into 
the categories of either statistical or frequency domain. A brief 
description of the three texture methods of interest follows. 

Figure 1. AVHRR channel 1 ten-bit radiance 
values, histogram equalized for display. 

Figure 2. AVHRR channel 4 ten-bit radiance 
values, inverted for display. 
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Statistical Methods 

The two most commonly used statistical texture methods are 
the a) gray-level difference vector (GLDV) method (Welch et 
aI., 1990, Khazenie and Richardson, 1991), and the b) co­
occurrence matrix method (Haralick, 1973). Our current study 
draws upon both of these methods. Both methods extract a set 
of statistical parameters from a given image. Some of the 
commonly extracted texture parameters are inertia, correlation, 
homogeneity, entropy, energy, variance, skewness, and 
kurtosis. These parameters are then used as the input features 
to a classifier. 

Texture measures are derived commonly from statistical 
parameters of first or second order. The GLDV method 
estimates the probability density function for differences taken 
between image function values at locations spaced d pixels 
apart and at an angle S. The resulting texture measures are 
based on this first order statistic. The spatial co-occurrence 
matrix method, on the other hand, estimates the joint gray level 
distribution for two gray levels located at a distance d and at an 
angle S. The texture measures derived by the co-occurrence 
matrix method are based on this second order statistic. 

The co-occurrence matrix method is used in this study to 
derive texture values of entropy, homogeneity, energy (similar 
to the GLDV angular second moment), and correlation. These 
four parameters were calculated for the radiances of each of the 
two channels, A VHRR channel one and channel four, for a 
total of eight texture values. Each texture value was processed 
using three different convolution sizes. The n by n 
convolution sizes are n = 3, 9, and 16. In addition, the 
search angle for each of the convolutions was varied to 
determine whether or not the derived textures possess any 

angular dependence. The angle was set to S = 0,0 45,0 90,0 

and 135.0 Search angle dependence is expected only when 
the surface resolution is much smaller than the 1.1 km surface 
resolution of the A VHRR instrument and indeed, as discussed 
later, no angular dependence was identified using the co­
occurrence matrix method and the given image data. 

The GLDV technique was similarly applied. The same texture 
values as for the co-occurrence matrix method were calculated. 
The calculations were perfOlmed on the same channel one and 
channel four radiance values, but only for a single search 
angle, S = O. The search angle non-dependence had already 
been established from working with the co-occurrence matrix 
method. Seven convolution sizes were chosen to derive the 
texture values of entropy, local homogeneity, and angular 
second moment. The convolution sizes were n = 3, 5, 9, 
11, 16, 32, and 64. From a previous study (Khazenie and 
Richardson, 1991) the three sizes of n = 3, 16, an d 64 
provided the best statistical representation of the data for use in 
cloud classification. This finding was re-established in the 
current work. 

Frequency Domain Methods 

Spatial granularity and repetitiveness is one of the 
characteristic aspects of texture. Both can be quantified by 
looking at the frequency content of an image. It is therefore 
reasonable to expect that transform techniques are suitable for 
extracting texture information from images. 

The Fourier transform analysis method (Lendm1s et aI., 1970) 
is a procedure which works in the frequency domain. It is, by 
far, the most used transform method. Image features, such as 
spectral rings or edges, are derived from the image power 
spectrum by this technique. 

Related to the Fourier transform are functions first introduced 
by Gabor (Gabor, 1946). These functions have been extended 



to two dimensions (Daugman, 1980) resulting in what is 
known as the two-dimensional (2-D) Gabor filters. 

One of the unique properties of Gabor filters is their ability to 
discriminate textural features in a way similar to that of human 
vision (Fogel et aI., 1989). Another important property is 
their achievement of the theoretical lower bound of joint 
uncertainty in the two dimensions of visual space and spatial 
frequency variables (Bovik et aI., 1990). Additional 
advantages of Gabor transforms include their tunable spatial 
orientation, radial frequency bandwidths, and tunable center 
frequencies. 

The 2-D Gabor filter is a harmonic oscillator, a sinusoidal 
plane wave within a Gaussian envelope. The convolution 
version of the complex 2-D Gabor function has the following 
general form. 

G(x, y I W, 0, cp, X, Y) = 

( _1_) [_[(X-X)2 + (y-y)21] . exp . 
2ncr 2a2 

sin(W(xcos ° -ysiIlO)+ cp) (1) 

In equation (1), the Gaussian width is 0', the filter orientation 

is 8, the frequency is W, and the phase shift is <po Variables 
X and Y define the center of the filter. 

The Gabor function, equation (1), can be represented as a 
complex function having a real and an imaginary component, 
G1 and G2, respectively. 

G leX, y I W, 0, cp = 0, X, Y) 

G 2 (x, y I W, 0, cp = f' X, Y) 

Functions G 1 and G 2 are, respectively, even and odd 

symmetric along the preferred orientation direction 8. The 
results of convoluting G 1 and G2 with any two-dimensional 

function are identical except for a spectral shift of rc/2 along 

the direction 8. 

Given an image I(x, y), its Gabor transformation for a given 

filter size n with orientation angle 8 and frequency W is given 
by the following equation. 

The Gabor filter described by equation (I) was applied to the 
A VHRR test images' channel one and channel four radiances. 

The response was evaluated for filters with 8 = 0,
0 

45,0 

90,0 and 135.0 The frequency W was set to 2rcf/(n12) 
where f = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The tested 
filter sizes n were 9, 17, 33, and 65. The best results for 
cloud typing from the four convolutions was for n = 17. 

RESULTS 

The 1024 by 1024 ten-bit radiance data from channels one 
and four was used as input to the various texture algorithms. 
The texture output was then resized back to the full 1024 by 
1024 resolution and added, as supplementary channels, to the 
radiance data. The resulting N channel data set was classified 
using a standard statistical unsupervised classifier. 
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Co-occurrence Matrix 

The texture results from the co-occurrence matrix algorithm 
were first classified alone for each of the convolution sizes and 
search angles. Figure 3 is the result of this classification for 
an n by n convolution size where n = 3 and for a search angle 

8 = 45. 0 This represents the best result for all of the 
classifications from the co-occurrence matrix algorithm. 

Figure 3. Texture values from the co-occurrence 
matrix algorithm, classified and scaled 
up for display. 

It is clear from Figure 3 that the texture values alone do not 
represent cloud types with any accuracy. Figure 3 shows nine 
classes, but none identify any of the cloud types uniquely. 
The classified images are extremely noisy and at best represent 
features within the cloud masses rather than the cloud types 
themselves. There is, however, one reasonably accurate 
feature which resulted from this classification. For the lowest 
convolution size, at all search angles, the clear vs. cloudy 
areas are quite distinct. 

For convolution sizes of n = 9 and 16, for all search angles, 
the classification separates the clear areas from the cloudy ones 
with success as well. It also produces a smoother 
classification. The cloud types, though, are still difficult to 
identify. 

The classifications were performed twice on the texture results 
where n = 9 and 16. The first classification was performed 
on all of the texture values derived. The second classification 
was performed on the same values except for the correlation 
parameter. The results of the cloud type classification neither 
improved nor degraded. Therefore it seems that the correlation 
parameter does not contribute to the information needed for 
cloud typing. 

In all cases of classifying only the co-occurrence matrix texture 
results, the thick cirrus was identifiable as a homogeneous 
feature, yet it was assigned the same class as portions of the 
open cell stratocumulus. Also in all cases, the snow was not 
separated from the clouds. The snow was assigned the same 
class as the stratus and altostratus clouds. 

It was concluded at this point that classifying texture values 
alone does not provide sufficient results for identifying cloud 
types. The next step then was to provide more information to 
the classifier. The eight texture values were combined with the 
two AVHRR channel radiances (channel one and four) and 
classification was performed on the resulting ten channels of 
data. 



The texture values for convolution size of n = 9 were resized 
to the full 1024 by 1024 resolution, equal to that of the 
channel radiances, merged with the channel radiances, and the 
resulting data set was classified. The output is shown in 
Figure 4. 

The search angle was varied as before, but the results from the 
classifier showed virtually no differences for unequal angles. 
The results for varied search angles were compared by 
calculating difference images. Only minor variations were 
noted in some of the mixed layer cloud types amounting for 
less than 1 % difference over the entire image. From this it 
was concluded that the process is not dependent on search 

angle and all further comparisons were made setting 8 = 0.° 

Figure 4. Combination of AVHRR channell, 
channel 4, and texture values from the 
co-occurrence matrix algorithm, clas­
sified. 

The frontal cloud mass at the extreme right of the image in 
Figure 4 is represented by four distinct classes. The thick 
cirrus, the altocumulus, the cumulus, and the lower level 
stratocumulus each appear as distinct cloud types. They are 
affected by the sun angle thereby giving the cirrus over the 
frontal cloud mass a different class than the cirrus over the 
stratus in the lower left portion of the image. 

The classes representing the stratus clouds provide more 
separation of cloud types than a human photointerperter would 
give. Should the goal be to duplicate human performance, one 
can easily combine some of the statistical classes. However, 
our goal was to obtain parameter vectors for performing 
unsupervised cloud classifications, no matter how many 
vectors there may be, as long as the distinct cloud types can be 
separated from each another. That goal was achieved. 

Gray Level Difference Vector 

The texture results from the gray level difference vector 
(GLDV) algorithm were first classified alone, identically as for 
the co-occurrence matrix. Similarly, the classification results 
from these texture values alone do not provide cloud type 
information directly. The results are essentially identical to 
those shown in Figure 3 for the co-occurrence matrix. The 
textures values, when classified, identify edges between 
features within the image well, but the features are various 
areas within the cloud type rather than the cloud type itself. 

As with the co-occurrence matrix method, the GLDV performs 
very well at identifying cloud versus no cloud areas within the 
scene. It is not know at this time, however, if this capability 
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can be extended easily to all A VHRR images. With more 
study this may indeed prove to be the case. Simple 
thresholding of the texture values may be all that is required. 
Results from a previous study (Khazenie and Richardson, 
1991) support this conjecture. 

As with the co-occurrence matrix output, the textures derived 
by the GLDV were then combined with the channel one and 
channel four radiances. The resulting eight channels were 
classified and the outcome is shown in Figure 5. Again, the 
results are essentially identical to those from the co-occurrence 
matrix method (Figure 4) in their ability to type clouds. Sun 
angle remains a problem within the frontal cloud region at the 
extreme right of the image. However, the mixed layer clouds 
in the lower left show the same successful level of cloud type 
separation as with the co-occurrence matrix method. 

Figure 5. Combination of AVHRR channell, 
channel 4, and texture values from the 
GLDV algorithm, classified. 

Convolution size plays a role in the ability to type clouds. For 
n > 16 the algorithm is able to identify the presence of 
clouds. It is also able to determine that the texture in the 
region is unique. However, it does not provide enough 
information to the classifier to separate cloud types. Although 
the statistical significance is in favor of the higher convolution 
sizes, it is the lower convolution sizes that provide the textural 
significance to the classifier for cloud type identification. 

Gabor Filters 

Figure 6 presents the result of classifying the test image 
channel one and channel four radiances combined with the 
Gabor filter output where n = 17 and phase angle <p O. Of 
the available 2048 by 2048 data, the same 1024 by 1024 
scene was originally acquired as for the statistical methods. 
However, computer resources available for the study of Gabor 
filters could digest no more than 512 by 512 images. 
Therefore, only the lower left quarter of each 1024 by 1024 
scene was analyzed. One such quarter is shown in Figure 6. 

The thick cirrus over the stratus is well separated. This is a 
great improvement over the classification of texture values 
from the Gabor filter alone. Indeed the classifications of the 
combined image, radiances and textures shown in Figure 6, 
are much easier to label than are either of the classifications 
based on texture only. 

Convolution sizes n > 17 do not perform well for a wide 
vmiety of cloud types within a scene. This follows along with 
the same findings as for the statistical textural methods. 
ImpOltant textural attributes in the cloud mass are lost when 



higher convolution sizes are used. With such convolution 
sizes, the textural analysis shows the dominant texture over 
each cloud mass, but does not sufficiently indicate 
characteristic features of that cloud mass thereby missing the 
classification of the cloud type. In particular, the open cell 
stratocumulus and altostratus within the image did not separate 
out at the higher convolution sizes. 

Figure 6. Combination of AVHRR channell, 
channel 4, and texture values from the 
Gabor filter, classified. The results 
shown cover only the lower left quarter 
of the test image. 

While it has not been tested in this study directly, it is 
conjectured that the approach using the Gabor filter will be less 
sensitive to latitude variances and seasonal changes compared 
to the two statistical techniques. The Gabor filter is a tunable 
algorithm. With proper adjustment of control parameters it 
should be possible to desensitize the filter to local effects, such 
as latitude changes and seasonal effects, while retaining the 
ability to extract the required physical response which uniquely 
represents each cloud type. 

Inter-comparisons 

The results from classifying only the output of the two 
statistical textural methods, the co-occurrence matrix and the 
GLDV, are almost exactly alike. This is reasonable since the 
texture measures calculated by both of these algorithms were 
the same. One should expect the same results even though 
they were arrived at by different means. The GLDV is based 
on first order statistics while the co-occurrence matrix method 
is based on second order statistics. It can therefore be 
concluded that, given our test images, the extra complexity of 
the second order statistics is not necessary for arriving at 
satisfactory results. 

It is also noteworthy that the results from the two statistical 
methods are virtually identical even though different 
convolution sizes were used. This suggests that the features, 
which distinguish cloud types, are fairly coarse. It also 
suggests a lack of fine features which would distract a method 
that uses a small convolution size. 

The output of the Gabor filter has different characteristics 
compared to the output of the co-occurrence matrix and 
GLDV, yet the ability to separate cloud types is very similar 
for all three methods. The resolution of the Gabor filter output 
is lower, seventeen pixels versus nine for the co-occurrence 
matrix and three for the GLDY. The classification results are 
greatly influenced by this resolution difference. This is 
obvious by comparing the pixel size in Figure 6 with Figure 4. 
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In Figure 6 the boundary of the thick cirrus over the stratus 
has been smoothed. This is also true for the stratus cloud 
types. The separation of multilayered clouds is similar for all 
three methods. 

The computer processing time required for the Gabor filter 
method proved much less than either of the two statistical 
methods (co-occurrence matrix or GLDV). Processing a full 
1024 by 1024 scene using the Gabor filter took 
approximately one minute on a SUN SparcStation II. The 
statistical methods required approximately ten minutes each for 
the same image. 

CONCLUSION 

Classification of cloud types using spectral and derived 
textural parameter vectors alone has not been completely 
successful. Additional information about texture in the image 
provides more input to a cloud classifier. Such an addition 
shows considerable improvement over cloud classification 
based only on spectral information. Despite the marked 
improvement, however, it does not yet appear that the addition 
of texture information provides all of the necessary parameters 
required to successfully classify and completely label cloud 
types. Nevertheless, results from this study indicate that 
Gabor filters applied to the spectral data set, and used in 
conjunction with the spectral data for classification, extract 
cloud types better and faster than the other techniques 
explored. 
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