USE REMOTE SENSING DATA TO INVENTORY ECLOGIC ENVIRONMENT IN HULUN LAKE

Liu Hul ink Ding Xiu
Aerial Survey and Remote Sensing Center for Nuclear Industry
P.O.Box 183 Shijiazhuang CHINA

ABSTRACT

In this paper the four ecologic factors are inventoried by using remote sensing data. They are the concentration of algae, water depth, bottom sediment and current character in Hulun lake. In the past, it was difficult to resolve these subjects by ordinary methods. Some new theoretical analyses and interpreting methods are introduced in this work, such as using TM 5 band of remote sensing data in sumer to interpret the concentration of algae, using TM 6 band data in autumn to determine the water depth etc. The convection and stratified flow models are set up for interpreting water depth and current character respectively. The results and conclusions obtained from this work have great significance for environmental protection and regional development.

KEY WORDS: Water application, Ecologic environment, Concentration of algae, Water depth, Bottom sediment, Current character.

1. INTRODUCTION

Hulun lake lies in the Hulunbeir League of Inner Mongolia. Geographic coordinates are from 48°30'40" to 49°20'40" and 117°00'16" to 117°41'40". Its geographic background is the Hulunbeir prairie, a wide and beautiful grassland, today keeps the natural landscape in the world. Hulun and Bair lakes look like a pair of glossy pearl imiHated on the prairie. The shape of Hulun lake offers as an inclined rectangle with length 90 km in NE direction and width 41 km in NW direction. When the water level up to 543.33m of elevation, the average of water depth could be 5.7 m, the maximum depth could overtake 8m; the area of water surface could be about 2,339 km²; and the capacity could be 1.385 x 10¹⁰ m³. There are rich hydrophytes in the region of Hulun lake and in marsh and swamp surrounding it, where are a good stations for waterfowls (see Fig. 1.).

In history, Hulun lake have had the powerful actions for the rise and the fall of notions in the north of China, such as Mongol and Jurchen etc. Today, Hulun lake and its circumference get development and are growing into a bases of agriculture, pasturage, fishery, coal and colored metal mines in Inner Mongolia. In these years, an environmental protected location with 7,000 km² have been confined, and would be extended to 40,000 km². It is necessary to present five sections, apart from first section, from second to fourth sections consider with concentration of algae, water depth, bottom sediment and current character. Finally the conclusion and the discussion are presented.

Therefore it is important for us to inventory the ecologic environment and resource in this region. In the past, the knowledge about Hulun lake is very simple, though the records on it can be read in the literatures written since 200 B.C, and in the country official files through out ages. Since 20th century Russian and Japanese scientists have taken some investigation for geography of this lake, but those works were superficial.

The systematic and scientific investigation for this lake started on 50th years of current century. In 1958 seven hydrologic substations have been built at Hulun lake and at the three main rivers directly joining with Hulun lake, by the Hydrologic Station of Hulunbeir League. Then the chinese scientists have frequently investigated for fishery and other animal and plant resources of this lake. Since 1987 a series of investigation of Hulun lake have been taken by the Institute of Environmental Science of Inner Mongolia Autonomous, in order to prevent from contamination, to protect ecologic environment and to develop as well as finely utilize aquatic animal and plant resource of Hulun lake. This work mainly contains analysing water quality and measuring concentration of algae. The bottom sediments and current character are simultaneously considered. One of methods for these subjects is the analysing and synthesizing remote sensing data by computer system.

Simultaneously, reliability and lower price are seen as the superiority of using remote sensing data to inventory ecologic environment in water bodies, but the accuracy would be not too better, because of less gray levels and of the intermixure caused by multi-signals in the remote sensing imagery of water bodies.

Forerly, visible and near infrared (TM 1--4) bands of remote sensing data were generally attached much importance in extracting geophysical information in water regions. In addition the transparency of the mid-infrared (TM 5.7) and thermal-infrared (TM 6) light is considered too low than that of visible and near infrared light in water bodies, so they could not reflected the features of water under-surface. However, these conventional views have encountered some difficulties in the subjects about Hulun lake, because the transparency of the visible and near infrared light is diappolnted, because of turbid water quality and superabundance of algae. Hence the middle and thermal infrared bands of remote sensing data have to be used into the interpreting many kinds of environmental information in this study. So it is necessary to present new theories and to build models.

This paper is divided into five sections, apart from first section, from second to fourth sections consider with concentration of algae, water depth, bottom sediment and current character. Finally the conclusion and the discussion are presented.

2. CONCENTRATION OF ALGAE

2.1 Theoretical Analysis

In the past, the visible and near infrared, such as MSS 4--6 or TM 1--4 bands of remote sensing data have frequently been used to interpret concentration of algae in water bodies (Johansen R. V. 1987). Based on experiments, the relationship of amount of chlorophyll with value of gray level was considered linear or logarithmic linear (Nykjaer L. et al. 1980). Several works have shown that, the increase in reflectance in TM 2 (λ = 0.52--0.69 μm) and TM 4 (λ = 0.76--0.81 μm) bands as will as the decrease in reflectance in TM 1 (λ = 0.45--0.52 μm) and TM 3 (λ = 0.63--0.69 μm) could be caused by increase in amount of chlorophyll(algae) in water.

307
However, the relationship, as mentioned above, is unreasonable for using remote sensing to calculate the concentration of algae in Hulun Lake. Digital analysis showed that, TM 1–3 bands of remote sensing data in Hulun Lake are uncorrelated with the concentration of algae (see Table 1).

Table 1: Means, Standard deviations, Covariance and Correlation Matrixes of Landsat 5 Remote Sensing Data of Hulun Lake (received on Jul. 20, 1987).

<table>
<thead>
<tr>
<th>TM 1</th>
<th>TM 2</th>
<th>TM 3</th>
<th>TM 4</th>
<th>TM 5</th>
<th>TM 7</th>
<th>TM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.34</td>
<td>35.88</td>
<td>59.06</td>
<td>10.99</td>
<td>5.57</td>
<td>2.49</td>
<td>121.30</td>
</tr>
<tr>
<td>4.14</td>
<td>2.90</td>
<td>4.34</td>
<td>7.91</td>
<td>10.50</td>
<td>4.91</td>
<td>5.10</td>
</tr>
<tr>
<td>10.9</td>
<td>10.53</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
<td>8.31</td>
</tr>
<tr>
<td>11.76</td>
<td>10.64</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>-1.13</td>
<td>-0.65</td>
<td>8.96</td>
<td>39.13</td>
<td>45.38</td>
<td>26.06</td>
<td>-1.16</td>
</tr>
<tr>
<td>-1.16</td>
<td>1.45</td>
<td>9.09</td>
<td>25.80</td>
<td>34.47</td>
<td>17.35</td>
<td>36.34</td>
</tr>
</tbody>
</table>

In other words, it is encoding the numbers of gray level of TM 5 band into different colors, in order to enhance the personal recognition effectiveness (as Fig. 3a and Fig. 3b). Here the numbers of gray level of TM 5 band of remote sensing data is from 0 to 9. The encoded color imagery have nine colors, corresponding with the nine gray levels.

Apart from physical significance mentioned earlier for us subject the reason of selecting TM 5 band to encode and to interpret concentration of algae is that, the data of this band have the variance, so it is possible to sort them into more classes of concentration of algae. If selecting one of the other two (TM 4 or 7) bands to be encoded the analogical results would be obtained, but the recognizable classes were less.

In order to explicate the correctness of this method for interpreting concentration of algae in Hulun Lake, a statistical analysis of TM 1–7 bands in training areas is made for every concentration classes by gray levels of TM 5 band. The result shows the variation regularity in averages of gray levels of TM 4 and TM 7 bands accord with TM 5 band in each training areas. But this rules are improbable to TM 1–3 and Table 2.1.

Table 2: Variation of TM1–7 bands data in each training areas of algae concentration classes.

<table>
<thead>
<tr>
<th>TM 1</th>
<th>TM 2</th>
<th>TM 3</th>
<th>TM 4</th>
<th>TM 5</th>
<th>TM 7</th>
<th>TM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>11.76</td>
<td>10.64</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>-1.13</td>
<td>-0.65</td>
<td>8.96</td>
<td>39.13</td>
<td>45.38</td>
<td>26.06</td>
<td>-1.16</td>
</tr>
<tr>
<td>-1.16</td>
<td>1.45</td>
<td>9.09</td>
<td>25.80</td>
<td>34.47</td>
<td>17.35</td>
<td>36.34</td>
</tr>
</tbody>
</table>

In relative quantity, it is completely possible to express the concentration classes of algae with TM 5 band of remote sensing data in water bodies, but in absolute quantity, only using remote sensing data one can’t calculate the value of concentration of algae in water bodies. It is necessary for us to calibrate each of concentration classes by practical measurements. So that in Jul. 1987 we have taken 20 samples of water with planktonic algae in Hulun Lake, and have examined them in laboratory. Table 3 shows the measured data for sample points according with each class of concentration.

Table 3: Measurements of planktonic algae concentration at each of sample points.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.56</td>
<td>5.44</td>
<td>6.44</td>
<td>11.44</td>
<td>16.44</td>
</tr>
<tr>
<td>2.76</td>
<td>3.25</td>
<td>12.12</td>
<td>12.12</td>
<td>12.12</td>
</tr>
<tr>
<td>5.54</td>
<td>8.79</td>
<td>13.13</td>
<td>13.13</td>
<td>13.13</td>
</tr>
<tr>
<td>50.28</td>
<td>36.39</td>
<td>15.15</td>
<td>15.15</td>
<td>15.15</td>
</tr>
</tbody>
</table>

From Table 2 and Table 3 we can see the relationship of gray level of TM 5 band with concentration of algae in Hulun Lake, the concentration of algae is from 3.50ug/ml to 50.20ug/ml, the gray level is from 1 to 9. The conclusion obtained is that, the number of gray level of TM 5 band of remote sensing is approximately to 3.5ug/ml of concentration of algae.
This result is very suitable for us to study the ecological environment of water bodies in macroscopic fields, though its precision and ground resolution are lower.

3. WATER DEPTH AND BOTTOM SEDIMENTS

3.1 Background

Water depth and bottom sediments are two important environmental factors in the limnology and have significant meanings to inventory the degree of eutrophication and environment reduction situation, rationally develop and to utilize aquatic resources from now on.

Before this century all literatures about Hulun lake have not mentioned water depth and bottom sediments. In the middle decades of this century Russian scientist Nuchkof have had impressively indicated the average of water depth of Hulun lake was 2.9m, maximally to 8.9m. After building of hydroelectric substrates the depth of water could be deduced by using the observations, as mentioned in the past section. In 1967, some imperfect measurements were done by the state surveying and mapping office using ropes. The results have been reflected at the topographic maps printed in 1967. But these measurements were unrefined, especially, at the center-south parts of Hulun lake. As regards investigation on bottom sediments of Hulun lake, it is constantly not related such important.

In our state, the significance of bottom sediments to limnology has not sufficiently been recognized until eight of this century. Since 1967, many times of measurement of water depth and bottom sediments have been wanted to do, in order to improve the contents of eutrophication inventory, but it is a difficult task to be finished in short period. So the depth measurement and bottom sediments sampling were only taken at several points, where the water samples with algae have been done. The macroscopic investigating of water depth and bottom sediments have to be helped by the remote sensing technology.

3.2 Theorical Analysis

Formerly, visible and near infrared bands, such as MSS 4-6 or TM 1-4, have been used to investigate water depth and bottom sediments (Abdel Mady M.A. et al 1982.). The essential idea is regarded light in these bands have certain ability to be transmitted by water, and could reflect some underwater features. (Gyzenka D.B., 1967 and 1968, and Gordon M.B. et al, 1970). However, this idea is invalid in subjects of Hulun lake, because of the distance of transmitting light in this lake is no more than 0.5m in normal condition. Therefore we should present a new method to interpret water depth and bottom sediments of Hulun lake.

Principle of this method is regard as that, the surface temperature of Hulun lake is quasi-direct proportional to water depth in convection period. Thus TM 6 band of remote sensing data could reflect water depth, but only the correspondent relationship of gray levels with water depth must be scaled by field measurement. If that was done, then the bottom sediments and their boundary line would easily be defined based on relationship of the boundary line with water depth, built in observation.

The vertical convection between the upper and the lower layers of lake water can occurs in two period one of them is the spring, when the ice is thawing and water temperature is raising, another is the autumn, when water temperature is descending and ice is forming. Normal TM 6 band of remote sensing data in the second period is selected to interpret depth of water bodies, because this period is longer than the first period. one can found the relation contents in any physical textbook for explanation of this phenomenon (Xia-Hai Yan et al., 1990).

The water depth interpreted by using TM 6 band of remote sensing data may satisfy to macroscopic ecology, though its spatial resolution is lower.

3.3 Imagery Features

Based on the principle mentioned before, as the primitive data, the TM 6 band of remote sensing data received on Oct. 21, 1986 are selected to interpret water depth of Hulun lake. Its gray level are from 84 to 96, the corresponding temperature is from 279.7K to 282.5K. The meteorological data on this day showed that, atmospheric temperature at the south end and the north end of Hulun lake is 10°C and 11°C respectively, at that time, when the remote sensing satellite is passing through. Therefore this imagery is completely suitable to interpret water depth in Hulun lake. Each of the thirteen gray levels of TM 6 band would accord with a certain water depth. The higher gray level is the deeper the water depth.

3.4 Image Processing and Calibration

In the past section analysis have shown that, distribution of water depth can be determined by using TM 6 band of remote sensing data in the period of convection between upper and lower stratification. Thus these data could be decoded false color imagery, each color at which represent one of certain depth stage, while the border line between the color regions would be the isobathic line. Correspondent depth could be calibrated by field measurements.

Table 3. Listed gray levels of TM 6 band data, encoded colors and correspondent depth inside Hulun lake. Here the remote sensing data had been received on oct. 21, 1986.

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>Color</th>
<th>Correspondent Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>red</td>
<td>0.0m</td>
</tr>
<tr>
<td>84</td>
<td>red</td>
<td>2.0m</td>
</tr>
<tr>
<td>86</td>
<td>green</td>
<td>5.0m</td>
</tr>
<tr>
<td>88</td>
<td>green</td>
<td>7.5m</td>
</tr>
<tr>
<td>90</td>
<td>blue</td>
<td>10.0m</td>
</tr>
<tr>
<td>92</td>
<td>blue</td>
<td>13.5m</td>
</tr>
<tr>
<td>94</td>
<td>blue</td>
<td>16.0m</td>
</tr>
</tbody>
</table>

This table show that the gray levels changes from 84 to 96, while the water depth changes from 0 to 7.5m. Thus functional relationship between water Depth (D) and Gray level (G) of Hulun lake could be written into the experimental formula: D=0.5G^0.81. The depth levels of water in Hulun lake defined by this expression is accordance with the data drawn in the topographic maps published in 1967 by state surveying and mapping office, fundamentally.

Finally we obtain the synthetically interpreted map of water depth distribution in Hulun lake (See Fig. 4).

4. CURRENT CHARACTER

4.1 Difficulty of convetional methods

In this section the problems are looking for the sapping sources of ground water sapping, expect the known three rivers, and to judge the current character in Hulun lake, these subjects were neglected for long time. In these years, by remote sensing data interpreting current character and sapping sources in lake and in same generally using Synthetic Aperture Radar (SAR).
circular flow current
a pseud color imagery
obvious speed of current (as ground water suppling in Hulun lake.
Primary rivers vater; In autumn imagery the back...sensing imagery.
4.3 Image
concerned that, the visible and near infrared (TM 1-4) bands of remote sensing data have to be used to interpret current character and ground water suppling in Hulun lake.
4.2 Stratified Flow Model
In order to interpret current character and ground water suppling of Hulun lake, the stratified flow model presented in this section.
The stratified model could be understood that, the water injected into lake from rivers and from springs flows along individual strata, temperature of which would be equal to that of injected water. For examples, in summer temperature of water injected from rivers is higher than that of lake water, so the river water would flows along the lake surface, while temperature of water injected from spring could lower than that of lake water, so the spring water would flows along bottom; as opposed to it, in autumn the process would be contrary to that in summer. Thus remote sensing data received in summer or in autumn could only reflect current character of the water injected from rivers or springs respectively.
So we could obtain the conclusion: the current characters of Hulun lake are different in various seasons, for example, in summer the river water would flow from stream outlets to spring points along water surface, as well as the spring water would flow from spring points to stream outlets along lake bottom. Therefore the convective circulation would forms in vertical section (Fig. 5.b). On other hand, in autumn the circulation cell of lake water would be contrary to that in summer (Fig. 5.a).
4.3 Image Processing and Interpreting
For interpreting current character in Hulun lake, the image processing method is simply to compose a pseud color imagery with these bands of remote sensing date selected from TM 1-4 bands. If TM 1, TM 2, and TM 4 bands composed a color imagery with blue green and red, then every colors zones on the composed imagery would represent one kind of the current originated from one of water source. These results processed by mentioned method have been showed in Fig. 6-a and Fig. 7-a. From the two Figures we can see the current characters of lake water in summer and in autumn respectively. In summer imagery the dark zones are the active regions of rivers water; In autumn imagery the dark zones are the active regions of spring water. The corresponding interpreted show as Fig 6-b and Fig 7-b respectively. Here the arrows indicate the flowing directions of surface current of lake water. The sources of arrows are the stream outlets, e.1. the river sources or spring outlets. Thus we could find that the unknown spring points would have more than 30. These springs mainly distribute in coastal zones surrounding Hulun lake, specially, in the north-western coast. The correctness of these results have been examined by geologic interpretation and field investigation.
5. CONCLUSION
We have discussed some problems about using remote sensing data to inventory ecologic environment in Hulun lake. These subjects are the important factors for regional developing and environmental protection.
In the past, these subjects were difficult to be solved by ordinary methods, now it is very simple, because of using remote sensing data interpretation. The results could satisfy requirement of macroscopic water region research, though their precision and ground resolution were lower.
From interpreted results we can see following features of ecologic environment of Hulun lake:
(1) The concentration of algae in Hulun lake have overtaken 3ug/l, which is extremely higher than allowable, and seriously endangers natural ecologic environment. It is a problem to have to resolve.
(2) The distribution of algae in Hulun lake displays with certain regularity: Usually the probability is that, in the south part of this lake, static water regions and shallow zones the concentration of algae usual is higher than that in north part, mobile water and apyalal zones respectively. But the relationship of algae concentration with the water temperature is non obvious.
(3) The depth distribution of water in Hulun lake have some features: The topographic form in Hulun lake is gentle fundamentally; the average of depth is 5.67m in 1988, when the water level up to 544.9m. But in the western coastal region the water depth is deeper than that in the east coastal region. A south-western trending rise crest has been found in the south-western of this lake, that is unknown in the past.
(4) The supplement of ground water (the spring) in Hulun lake possessed of a great scale, it is the important factor to stabilize water surface. All positions of springs interpreted coincide with water bearing strutures surrounding this lake.
This work is supported by Commission of Science and Technology of Inner Mongolia Autonomous of China.
6. REFERENCES

Figure 1. Location of Huian lake in Chinese dominion.
Figure 2. Spectral transparency of clear water.

Figure 3. Distribution map of algae concentration in Hulun lake—false color coded imagery of TM 5 band of remote sensing data (Jul., 20, 1987).

Figure 4. a. Interpreted from TM6 Band of remote sensing data (Oct., 21, 1988).

Figure 4. b. Bathymetric chart of Hulun lake.
(a). In the summer.

(b). In the autumn.

Figure 5. Convective circulation formed in vertical section of lake water.

Figure 6. a. Additive color combined image with TM 1, 2, and 4 bands (Jul., 20, 1987).

Figure 6. b. Current character of Buhu Lake in summer.
Figure 7. a. Additive color combined image with TM 1, 2, and 4 bands (Oct., 1988).

Figure 7. b. Current character of Nuwan lake in autumn.