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ABSTRACT 

DigitaJ ima¥e filtering for restoration an~ en~ancem~n.t is .often advantageously carried out in the frequency domain. Estimates of 
two-dimens1(~nal ~pectra are u~ually reqmred m the dlgltalimage spectral analysis. Among the various methods of two-dimensional 
dect.rum ~stImatIon, the ~axm~u.m entropy approach has advantageo~s characteristics in spite of the computational complexity. 
h ne IteratIve approach WhICh .ut11~zes fast ~ouner transforms (FFfs) wIth adaptive support region and relaxation parameters using 

t e entropy rate ~as been studIed ~n comp.ans0!l to. conventional periodogram and parametric approaches. The princi al features of 
the method are discussed along WIth practIcal filtenng results using remote sensing and other similar imagery. p 

1. INTRODUCTION 

Digital imagery, esp~cially from Remote Sensing (RS) sensors, 
has long been recognIzed as a natural and cost effective source of 
data for Geographical and more generally Spatial Information 
Systems (GIS/SIS). Essentially, imagery data can provide a 
wealth of spectral information with a range of spatial and 
~mpo!al ~esolutions. Advru;c~~ ~n digital image processing and 
v~suah~atIon offer ne,,:, poSSIbIlitIes to analyze and model image 
distortlOns for restoratIon and enhancement purposes in order to 
facilitate the information extraction and processing. 

Digital image processing for restoration and enhancement can be 
performed in both spatial and spectral domains or more 
specifically in terms of the grey values or the frequency 
components. For systematic noise filtering, known or modeled 
signal degradation and various other image processing purposes, 
spectral domain processing has definite advantages over the 
spatial domain computations. 

In general, the image generation process can be simply described 
using the following linear model: 

g(x,y) = h(x,y)*f(x,y) + n(x,y) 

where f(x,y) d~notes the ideal or true image function, g(x,y) is 
the correspo~dmg degr~ded !mage function, h(x,y) is the point 
spread functlOn of the Imagmg system and n(x,y) is the noise 
funct~on for the i~age coordi~ates x and y. In the spectral 
doma,m, the preceding convolutIon equation becomes a product 
equatIon 

G(u,v) = H(u,v)·F(u,v) + N(u,v) 

wher~ G(u,v), F(u,v), H(u,v) and N(u,v) are the respective 
FourIer n:ansforms of g(x,y), f(x,y), h(x,y) and n(x,y). It is 
worth notmg that the linear modeling is often a simplification of 
the actual physical situation which simply reflects the availability 
of practical solutions. 
The problems of filtering and restoration of digital images are 
often analyzed with filters designed using first and second 
~tatistica.l moment information. Sample autocovariance 
mformatIon needs to be extended to estimate the power 
speclT?m. Such two-dimensional extensions are greatly more 
complIcated than their one-dimensional equivalent as well known 
implications of factorization and interpolation difficulties in two 
and higher dimensions. 

For l~ast~squares restoration of a digital image, the restoration 
functIon IS 

1 IH(u, v)12 
M( u, v) = --. ----:::::-----:..----

H(u, v) IH(u, v)1 2 +[Sn (u, v) / Sf (u, v)] 

which is usually called the Wiener-Helstrom filter, where 
Sf{u,v) denotes the spectrum of the ideal or true image and 
Sn(u,v) is the noise spectrum [e.g., Castleman, 1979]. In the 
absence of noise, this filter reduces to an ideal inverse fIlter with 
M(u,v) = 1 / H(u,v). 

Another common approach to image deblurring and restoration is 
with the/power spectrum equalization (PSE) filter for which the 
restoration function has the form: 

M(u,v) = ( __ ---:2 ___ 1 _____ JI/2 
IH(u,v)1 + [Sn(U,V)/Sf(u,v)] 

using the same notation as in the previous case [e.g., Castleman, 
1979]. This linear transform filter is designed with the 
constraint that the spectrum of the restored image be equal to the 
spectrum of the ideal or true image, i.e. Sf{u,v). This filter also 
reduces to the inverse filter in the absence of noise and has high 
frequency characteristics. 

The design and implementation of the preceding and other 
similar filters for digital image processing require the estimation 
and analysis of the spectrum for the degraded images as well as 
the corrected images. In practice, information about the 
degradation processes affecting the digital images is often limited 
and hence, the use of spectral analysis becomes all the more 
important. 

2. TWO-DIMENSIONAL SPECTRUM ESTIMATION 

The estimation of the spectrum of a digital image is relatively 
complex in practice because of the usual spatial sampling, 
quantization and other limitations with images from processes 
which are not always stationary. Different frequency bands may 
also have very different signal-to-noise ratios and distortion 
characteristics which can imply complications with certain 
spectrum estimation approaches. Furthermore, the image 
degradation processes are rarely well specified and easy to model 
so that the estimation of the spectrum of degraded images tends 
to present difficulties of interpretation and analysis. 

Fourier based methods are perhaps best known in terms of 
periodogram and correlogram approaches to spectrum 
estimation. In one dimension, they are well known for their lack 
of resolution which may be critical for spectral analysis of signal 
dominated imagery. The implied periodicities of the Fourier 
transforms have more serious implications in two dimensions 
and the resolution problems are also serious for interpretation 
purposes. 

Parametric methods tend to be very popular for their resolution 
implications especially in one dimension. Autoregressive, 
moving average and autoregressive-moving-average modeling 
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offer wide possibilities for empirical processes of all types. In 
two and higher dimensions, parametric methods are more 
complicated to formulate and justify in terms of the processes. 
Considerations of causality, realizability and other related 
questions can be very difficult to analyze in digital image 
processing applications. 

The fundamental problem of spectrum estimation is the extension 
of the sample autocovariance sequence as the power spectrum is 
defined as the Fourier transform of the autocovariance function. 
With Fourier based techniques, an implied periodicity in the 
sample autocovariance function outside of the sampling domain 
is hardly justifiable in rigorous terms for most applications. 
With parametric methods, the modeling implies the extension of 
the sample autocovariance function outside of the sampling 
domain. Both of these implied assumptions are difficult to 
justify and tend to impose constraints on the spectrum estimation 
[e.g., Pendrell, 1979]. 

The maximum information or entropy approach seeks to 
formulate the estimation problem in such a way that no 
unaccounted supposition or assumption is included in the 
estimation procedures. In one dimension, it is well known to be 
in full agreement with the parametric autoregressive method of 
extending the sample autocovariance function. In two and 
higher dimensions, the situation is generally quite different 
because of the non-unicity of the parametric formulation and 
other complications related to the autocovariance function. 

3. MAXIMUM ENTROPY APPROACH 

Numerous researchers have investigated the maximum entropy 
approach to spectrum estimation in two dimensions. Among 
them are Burg [1975], Pendrell [1979], Wernecke and 
D'Addario [1977], Lim and Malik [1981] and Lang and 
McClellan [1982]. Woods [1976] has given two theorems 
which state that only the positive definiteness of the 
autocovariance functions needs to be checked in order to 
guarantee the existence and uniqueness of the power spectrum 
estimates regardless of the support region. 

The approach of Lim and Malik [1981] which is based on the 
use of fast Fourier transforms (FFTs) has been further 
investigated and modified in terms of an adaptive support region 
and relaxation parameters to accelerate the convergence [Blais 
and Zhou, 1990]. Other research into the maximum entropy 
approach has led to a better understanding of the general 
situation and the difficulties in implementing the general 
approach of Lim and Malik [1981]. Related results and 
discussions of the maximum entropy approach to spectrum 
estimation can also be found in Blais [1992]. 

Given an estimated sample autocovariance function 
Cz(k.1x,li1y), k=O, ... , K, 1=0, ... , L, with corresponding grid 
spacings L\x and i1y, with the usual symmetry assumption 

Cze-k.1x,-li1y) = C* z(k.1x,lL\y) for k=O, ±1, ±2, .. . 
... and 1=0, ±1, ±2, .. . 

which is normally implied by the observational data (the complex 
conjugate may not be required with real digital image data), the 
required power spectrum is 

Sz(u,v) = F[Cz(k.1x,li1y)] 

with 

- (2i1u)-l,$ u < (2i1u)-1 and - (2i1vt l ,$ v < (2i1v)-I, 

that is, their respective Nyquist frequencies, where F[ ] denotes 
the Fourier transform. As the sample autocovariance 
Cz(k.1x,li1y) is only known for Ikl $ K and III $ L, the problem is 
to extend this sample autocovariance function for ki1x and li1y 
with Ikl > K and III > L. In one dimension, this extension is 
readily achieved with an autoregressive model but in two and 
higher dimensions, the difficulties are more serious and the 

following discussion covers a very appropriate strategy for 
digital image applications. 

The maximum entropy approach implies the existence of a dual 
autocovariance function Dz(kL1x,Ii1y) defined by 

with the properties that 

Dz(k.1x,li1 y) = 0 for alllki > K and 111 > L 

and 

Dz(-k.1x,-li1y) = D* z(kL1x,li1y) 

for k=O, ±1, ±2, ... and 1=0, ±1, ±2, ... (see Blais [1992] for 
details). The known sample autocovariance function values 

Cz(kL1x,li1y)=C;(-kdx,-li1y), k=O,±I, ... ,±K, l=O,±I, ... ,±L, 

and known dual autocovariance function values 

Dz(k.1x,li1y) = 0 for alllki > K and 111 > L 

provide a straightforward procedure for extending the sample 
autocovariance function. The approach of Lim and Malik [1981] 
consists in recursively using the following three equations: 

Sz(u,v) = F[I/Dz(k.1x,li1y)] 

Cz(k.1x,li1y) = F-l[Sz(u,v)] 

Dz(k.1x,li1y) = F-l[I!F[Cz(k.1x,li1y)] ] 

This algorithm is initialized with values for Dz(k.1x,li1y) and 
then iterates over the three equations until convergence or 
termination in problem situations such as in cases of high SNR. 
Discussions of this algorithm can also be found in McClellan 
[1982] and Blais and Zhou [1990]. 

The preceding procedure for some estimated Cz(k.1x,lL\y) values 
for Ikl ,$ K and III ,$ L leads to a number of questions for practical 
implementation purposes: 

(a) The difficulties in the estimation of the sample autocova­
riance function. 

(b) The support region for Cz(k.1x,li1y) is not always obvious 
especially when the image characteristics are variable. 

(c) The initial values for Dz(ki1x,li1y) have to be selected 
properly for convergence of the algorithm and reliability of 
the spectrum estimates. 

(d) In cases of high SNR and in other cases of slow 
convergence, are there any possibilities of accelerating the 
convergence? 

The following section will describe the results of some 
investigations into those implementation questions and some 
modifications to the original algorithm of Lim and Malik [1981]. 

4. PRACTICAL CONSIDERATIONS 

The initialization question for the algorithm was first 
investigated. In the original publication of Lim and Malik 
[1981], the initialization of DzekL\y,lL\y) was suggested as 

Dz(k.1y,ldy) = l/Cz(O,O) 

=0 

at k=l=O, 

elsewhere, 
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but it was found that in cases of slow convergence due to a high 
SNR the addition of some low level noise to the initial 
Cz(k~y,l~y) improves the convergence without affecting the 
estimate of the spectrum. Such addition of l~w l~vel t;'-ois~ to the 
autocovariance function Cz(~y,l~y) can be Justified m different 
ways but it can be regarded as a regularization str~teg.y for ill­
conditioned applications, which is well known WIth Ill-posed 
inverse problems. 

The characteristics of the autocovariance function Cz(~y,l~y) 
are obviously critical for the estimation of the corresponding 
spectrum. In practice, given some d~gital image. data,. the 
autocovariance function has to be estimated and m stnctly 
stationary situations, the larger the data set, the mor~ reliable the 
estimated autocovariance function. However, m cases of 
questionable stationarity, appropriately shaped and sized data 
windows have to be selected to arrive at reliable results. 

The shape and size of the support region for the estin:mt.ed 
autocovariance function are closely related to the charactenstIcs 
of the autocovariance function and the lengths of the fast Fourier 
transforms (FFTs) [Kashyap and Chellappa, 1983]. In case~ of 
highly correlated data sequences, the corr.espondmg 
autocorrelation function decreases very slowly WIth lag and 
hence larger support regions and larger FFTs are required for 
proper estimation of the spectrum. With poorly correlated data 
sequences, small support regions are acceptable fo; good 
estimates of the spectrum. However, as these questIons of 
optimal support regions are related to the SNR of the data 
sequence, the FFT length requirements and the convergence 
rates of the algorithm, further investigations into these problems 
are clearly warranted. 

The algorithm involves step parameters which control the 
convergence rate of the algorithm and. guarantee .the positive 
definiteness of the extended autocovarlance functIon. As the 
conditions are likely to change over a number of iterations, these 
parameters need to be adaptive to optimize the convergence of 
the procedure. As suggested in McClellan [1982], these 
parameters need to be adjusted so as to maintain the direction of 
steepest descent, which is a well known strategy in nonlinear 
optimization. 

5. ANALYSIS OF EXPERIMENTAL RESULTS 

A number of simulated data sets have been generated with 
different characteristics and the corresponding spectra have been 
estimated and analyzed. Limited experimentation has also been 
carried out with Landsat TM remote sensing imagery. One 
selected Landsat TM band one test image is a 256x256 pixels of 
a Calgary scene. The results of estimating the spectrum .of 
samples of this test image are shown in Figures 1 to 4 with 
explanations in the following paragraphs. 

The modified algorithm of Lim and Malik .[1981] w~s 
experimentally used in different ways for companson analYSIS 
purposes. The assumed stationarity of the test image was 
verified in subimages of size 64x64 pixels. Using the entropy of 
the grey level frequencies as an indicator of the information 
content in the subimages, the subimage with maximum entropy 
was selected for the sample autocovariance function 
computations. One interpretation of this procedure is that the 
most informative sample subimage was selected for spectral 
analysis. Figures 1 and 2 give the estimated spectra for the 
256x256 and 64x64 pixel images, respectively, using a 5x5 
pixel support region and a two percent noise variance added to 
the zero lag autocovariances. The similarities in these estimated 
spectra are quite pronounced. 

The shape and size of the sup~ort region. for the autoco~aria.nce 
function are well known to be Important m spectrum estimatIOn. 
With the TM test image and subimages, different shapes and 
sizes of support regions were experimented with. One impo~t 
consideration with TM digital images is that due to the scanmng 
procedures in the acquisition process, they tend to have higher 
correlation characteristics in the scanning direction than in the 
flight direction. It therefore follows that a rectangular support 

region with a larger dimension in the ~can~ing ~ection should 
be more appropriate for spectrum estImatIon. Flgw:e 3 sho~s 
the spectrum estimation results .wit~ a 5x7 support regIOn used m 
comparison with the results m FIgure 2 .WIth .a 5~5 support 
region. Some improvements in the scanmng directIon can be 
seen in the spectrum estimates. 

The added noise to the zero lag value of the sample 
autocovariance function has been seen to accelerate the 
convergence of the algorithm without apparently altering the 
spectrum estimate results. ~igure 4 sh?~s the results 
corresponding to Figure 2 but Wlt~oUt ~he addItIon of. low le,:,el 
noise. In the latter case, some 40 IteratIons were requITed whIle 
in the former case, only 25 iterations were required for the same 
level of convergence. This c~mputatio~al improvement is 
obviously dependent on the SNR It;'- th~ test lmage and ~~no~ be 
generalized without taking the digital Image charactenstIcs Into 
considerations. 

Other aspects of spectrum estimatio!1 with this. algori.thm. for 
digital image applications are sull unde~ mvestIgatIon. 
Comparisons with Fourier based and parametnc methods have 
confirmed the appropriateness of the maximum entropy approach 
although the computational aspects are more ~omplex and the 
interpretation of the results are not always straightforward even 
with apparently simple digital images. 

6. CONCLUDING REMARKS 

The use of the maximum entropy approach to spectrum 
estimation in digital image processing has been con~rmed in 
practice with a modified version of the Lim ~nd Mahk [1981] 
algorithm. Various asp~ct~ of .th~ a~gonthm haye been 
investigated and some vanatlons In lt~ ~mpleme!1tatlOn have 
shown some improvements over th.e ongmal yersIOn .. Further 
considerations of the dual autocovanance function are s1111 under 
investigation to improve the convergence characte~sti~s of this 
general approach to maximum entropy spectrum estimation. 

Digital image processing for filtering, restoration and 
enhancement purposes can greatly .benefit from m~re accurate, 
reliable and consistent spectrum estimates. The deSIgn of filters 
and quality control procedures generally .req~ire spectral 
information about the digital images. Consldenng the usual 
simplifications of stationarity and ergod.icity. in the sa~p~ing, 
more adaptive methods of spectrum estImatIon are defImtely 
required for numerous applications. 
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Figure 2: Contour Map of ME PSD Estimate for the TM Band Figure 4: Contour Map of f\:1E PSD Estimate for the TM. Band 
1 Test Image (Size 64x64, Support 5x5 with Noise) 1 ~est Image (SIze 64x64, Support 5x5, WIthout 
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