USER INTERFACE aND DIGITAL REMOTE SENSING ANALYSIS:
Reconciling Program Development, Applications Research
Data Production and User Interface During System Design.

Berne Grush Proceedings:

PERCEPTRON Computing Inc. Commission I1 SBymposium for
4800 Dufferin Street the XVih ISPRS Congress
Toronto, Ontaerio M3H 558 Rio de Janerio

Canada June 1984

ABSTRACT

Four hypothetical <classes of digital image processing

systems for remote sensing data production and enalysis are
described in conjuction with problems typically encountered
in their software design, especially as this applies to the
user interface.

A short discussion of software system design considerations,
again with special reference to the wuser interface, is
followed by & broad-spectrum definition of the ‘compleat’
user interface.

Finally, a short dissertation on PERCEPTRON’S machine
independent, all-softwsare entry. EASI/PACE.

Introduction

For purposes of this discussion, I will hypothesize four
classes of digital image processing systems, two at
production level and two at applications level. The systems

that each of us may be familiar with probably do not fit
neatly into this scheme, but so it is with all forms of
classification from the biological to the unsupervised.

I will describe what 1 perceive to be the state of the wuser
interface in many of these systems —— or at least the ones I
happen to be familiar with. With respect to any criticisms
I may make. please keep in mind that good programmers can
make machines do virtually anything, but that few of them
have been exposed to the full range of design considerations
for the user interface.

Indeed. I have read descriptions of what appear to be very
good interfacing technigques, and I think that several groups
are, by now, paying this problem the attention it deserves.
In the Hofman et al 1983 ERIM paper ocutlining the MIDAS
progject, the Transportable Applications Executive (TAE) is

described. This a common user interface providing menuing,
on—line help and a command language with parameter passing
and branching. Elsewhere in this same paper Hofman et al

write:

210

"A critical component of any software package is that
part with which the wuser communicates with the
program. Many users will judge the usefulness of a
package more by its wuser interface than by the
functions it supplies. If the man/machine intertace
is aswkward and difficult to use, the user will be less
likely to invest the time and energy it takes to learn
to wuse it. A good interface allows the user to
concentrate on solving his application problems rather
than solving the problem of how to use the software.

[Hofman,L.B., Ericksom W. K., Donovan,W. E. MIDAS: A
Microcomputer—bassed Image Display and Analysis Sustem
with Full LANDSAT Frame Processing Capabilities,
Froceedings of the Seventeenth International Symposium
on Remote Sensing of the Environment. p. 170. 1

Following the discussion of current user interfaces, I will
present a description of what I think should comprise the
complete user interface.

My parting discussion will be a description of a system that
I have been «closely involved with for the past few years.
Although this system does not yet cover the full rTange of
hypothetical systems, its structure has the potential to do

50. The user interface inherent in this suystem will allow

more analysts to enjoyu a more direct relationship with
remotely sensed imagery.

1: First Level Production Systems (P1)

The first class of image procesing sustems for
remotely—sensed data involves preparation of basic end-user
products directly from HDTs or from CCTs on which minimal
preprocessing has already been performed. These products

Tequire computation of various degrees of partial or
complete geometric and radiometric correction for CCT or
hardcopy output. Pl systems enjoy user acceptance in direct

proportion to their throughput and hardcopy quality. Speed
and throughput requirements are generally detrimental to
system flexibility, in particular where array processors are
employed.

These systems are constructed and operated by computer
programmers. Fl1 user interfaces usually reflects this fact,
but this is seldom a critical factor at this level.

2. Second Level Production Systems (P2)

Often further correction, enhancement, registration,
mosaiking and perhaps some filtering are required before a

211

product, suitable for cartographers and analusts., can be

created. Again these products are in the form of CCT or
hardcopy. Systems supporting this processing must be more
flexible than Pl systems and typically meet end-user
expectations less often than Pl systems do. The trade—off

between flexibility and speed (general purpose computers vs
array processors) may be misunderstood or ignored, in favor
of the tendency to select hardware without regard to
software.

The user interface starts to become important in P2 systems
since some computer—-literate analysts may like to have a
hands—on relationship with the data. Unfortunately, this
typically takes the form of peering over an operator’s
shoulder.

J: First Level Application Systems (A1)

Usually billed as ‘turnkey’, end—user stations, first level
application systems provide more specialized enhancement,
arithmetic (ratio, add, difference, principal components,
etc) and classification capabilities. User coentrollable
image raster display hardware is a system prerequisite.
System output tends to consist mainly of specialized
hardcopy and statistical tables, charts, plots and matrices.
In Al systems, flexibility is crucial. Various combinations
of operations may have to be constructed for each end-user’s
needs. Manval, spatial input plays as important a role as
does data quality and system throughput. Manipulating the
processing programs can become more important, and more
difficult, than manipulating the data - from both the
programmer ‘s and the user/analyst’s points—of-view.

The user interface is absolutely critical at the Al level.
Many computer 1literate analysts, eager to get hands—on
control of data processing, are discouraged by intimidating

and humiliating machine rebuffs. They return to Yover the
operator’s shoulders” mode. Many Al suystems that are
available either fall into disuse or require far too many
hours of operator coaxing to achieve desired Tesults. I
have been told on several occasions that: "the results were
not exactly what we wanted, but it was too much trouble to
re—do the work." In fact. I am familiar with a sustem whose

documentation was so troublesome to read that one of the
chief analysts using the system was unaware that the system
incorporated classification programs, even though these
algorithms were of central importance to the system. He
hired a programmer to write the apparently ‘missing’
programs.

212

4. Second Level Application Systems (AZ2)

Second level application systems provide grist for the paper
mill, more of which should be carried out, considering our
relative innocence in employing digital image analysis
techniques on remotely-sensed imagery. Here is where highly
computer—literate analysts wish to specify new algorithms
faor rectification, enhancement and especially for
classification, as well as improving existing algorithms.
Programmers are hired to design., code. test, debug and
struggle with mysterious things such as FORTRAN, JCL,
REX—11M, TASKLINKER, VYMS, DMAs and system crashes. Who has
time to consider mundane things such as the user interface,
when one can so directly challenge the MACHINE?

The A2 user {programmer) interface? Things are lopking even

worse, There isn‘t one. I have met several programmers
that use major. commercially available image processing
systems. When +they add new processing capabilities to the
system that their employer has purchased they all wuse the
same basic technique —— start over!

This technique is fool-proof. You don’‘t have %o struggle
through reams of misspelled documentation. You can avoid
the originator’s design flaws, and generste some new ones of
Yyour own. You are as free as Robinson Crusoce. You can keep

your jJjob as long as you like. And you can still blame your
problems on the original supplier anyway.

2. bystems Design for Understandabilify - P1 fhru A2

All data analysis systems. in particular the ones we
describe here, require design, implementation and
maintenance. If anything goes wrong during any of these
three phases, the system will see a very short life cycle,
and the end-user would probably have spent fewer dollars if
he had used more traditional techniques.

Furthermore, it is better to say "I don’t know" than to
quote rTesults that rest on more assumptions than any one
person can possibly verify. What I am saying here is that
one must have a very confident grasp of what these systems
{especially Al and A2) are actually doing to the data in
order to specify a processing sequence and provide a lucid
report of subseguent results.

Here, then, is the point of this paper and the goal of the
system design that I am about to describe:

The user interface is not only critically important. but
it extends well beyond slick graphics. convenient cursor
movement., and analyst’‘s—console understandability,

213

although these are very important. Indeed:, in the case
of A2 systems (if not s11 levels). the programmer
interface 1is exceedingly important. Of course in A2
systems the programmer is the major user. When he is
done, his programs should run in Al {(turnkey) mode.

One cannot expect to simply hire a programmer to implement
correct, tast, useable and understandable program modules
that are to be integrated into an existing sustem that
already has some number of similarily constructed modules
without providing reasanably sophisticated development tools
with which to work and document.

6. User Interface - a Definition

I hope you have noticed ¢that I have avoided wusing the
misleading phrase ‘Tuser—friendly". These two words now
cause any manager who has purchased an analysis system in
the past three or four years to cringe. Although there is
such a thing as user—friendly software, it hasn’t yet made
its debut in the image analysis world. No wonder. None of
us really understood how we were going te get the analyst in
touch with our programs until a body of well understood
techniques and terminology could be established. Although
that process is by no means complete, we are beginning to
see the outlines of that body.

I have, on numerous occasions. heard comments from both
managers and anslysts on the weaknesses inherent in the user
interfaces used in current work—-station technology. My
disussion, here, is meant to be a guideline for such
managers and analysts so that they might be more demanding
when specifying their future interface requirements.

ALL OF THE CAPABILITIES DESCRIBED HERE SHOULD BE CONSIDERED
INDEPENDENTLY OF ACTUAL APPLICATION CODE. IN OTHER WORDS,
THE USER INTERFACE SHOULD NOT BE EMBEDDED (TASKLINKED)
WITHIN APPLICATION PROGRAM MODULES.

6. 1: THE OPERATOR/ANALYST CONSOLE

The less hardware that the analyst has to manipulate, the
better. Double keyboard systems are confusing. Spatial and
image—display state control via data—tablet {or
touch—screen) is preferred, but keyboard and data-tablet
control must be integrated and the division of lasbour must
be carefully defined.

All messages, prompts, menus and help documentation written
to the terminal should be in concise, understandable

214

non—-computerese. We should be wusing, as much as is
possible, terminology from established 1literature rather
than words invented by programmers.

6.2 ON-LINE HELP

All system functions should have sufficient on-line help to
allow the analyst to come to the work station with only his
data tapes and professional literature. This means that ALL
user—level system documentation should be on-line. Getting
it on—line is easy. Making it especially readable is a
different story. The user/analyst should be able to enter
further documentation., especially if he has written local
procedural command sets for himself {(or his colleagues).
This documentation should be stored, accessed and displayed
in a manner that appears identical to the documentation
supplied with the system.

6. 3: COMMAND PROTOCOL

Assuming manual keyboard control entry, sll commands should
be constructed from a well-formed suntax. You should he
able to write, for example, a Backus—-Naur form syntax
description for the full set of commands. Extra points are
awarded if the syntax fits on two pages; points are lost
for syntax exceptions — which probably won’t be used anyway.

5.4: PROGRAM CONTROL ACCESS

You should be able to set up ALL program control via
COMMANDS and MENUS.

COMMANDS must be provided allowing the analyst to examine
and change the state {(value) of ANY control parameter for
ANY program in the system without actually Tunning the
application programs. As much as is feasible, the interface
should check user input for validity while s/he is setting
them, rather than during execution of +the application
program.

All programs should have MENUS., Menus should be invoked,
formatted and manipulated in a single, consistent manner.
Dense menus should have two (not more) states: one that
provides access to the basic functions for that capability.
and another that provides advanced options. Nesting - menus
more than two levels deep is for the computer-literate.
hence this should be avoided.

215

Reading between the lines, program control-parameter
handling as I have described here is well served by
data—dictionary methodologies. This approach provides, as

fallout, immediate translatability of menus, messages and
prompts to other natural languages.

All programs and analyst-written procedures must be
dispatched for execution wusing a single syntax structure.
In this way, supplied-programs and the procedures created
for (or by) the analyst on-site will appear to be dispatched
in the same manner — simply as commands to the machine to do
something.

6. 5. PROCEDURAL CONTROL

ALL program modules and program set—up commands must be
dispatchable from automated command PROCEDURES. Such
procedures are arbitrarily long sequences of system
commands.

These procedures must be NESTABLE. This means that a
procedure can itself dispatch another procedure. A caution
is in order here. If you rely on your operating system
utilities +to program this capability you can’‘t readily
transport it to another system.

These procedures must have CONDITIONAL dispatch
capabilities. one of the fundamental prerequisites of
so-called ‘expert’ systems. This implies that in addition
to an ‘IF’ statement, access to application control
parameters and local arithmetic capabilities must be
provided.

These procedures should have capabilities for internal
COMMENTS, on—line HELP documentation and a way to show a
control parameter MENU without actually dispatching the
procedure for execution. (If these HELP documents and MENUS
look like the ones provided by the actual application
programs, so0 much the better.)

6.6 EDITING OFPERATOR PROCEDURES

The interface should provide a mindlessly simple EDITOR to
create such procedures. (The model for such an editor might
look like a critical subset of the BASIC editor available on
most personal computers.) The analyst should be able to
STORE, RECALL and ALTER such procedures both temporarily and
permanently.

216

All of this must be done using the straightforward syntax
described earlier. The operator/analysts CANNOT be expected
te slip in and out of the user—interface handler to the
operating-system wutilities and direct application program
control.

THIS MEANS THAT EVERY KEY THAT THE OPERATOR/ANALYST TOUCHES
WILL APPEAR TO BE INGESTED AND HANDLED BY ONE AND ONLY ONE
PROGRAM. If you want to avoid serious maintenance problems,
1 recommend +that there be, in fact. only one interface
program.

6. 7. HISTORY LOGGING

HISTORY LOGGING capability should include: turning it of#f

and on. deleting it and printing it. The log should include
time stamps for the purpose of execution timing. especially
in A2 systems. I# your system will provide the sort of

procedural control thet I have already described. it is not
necessary that the log file actually be an executable entity
in the manner of journal files.

6. 8. ERROR HANDLING

ERROR HANDLING is probably the most difficult aspect of the
user interface. The TEeason for this escapes many
non—-programmers, but it is due to the fact that there are
several fundamentally distinct kinds of errors and we do not
seem able to handle all of them in the same manner, although
we should try to make it appear that way, if we can.

6. 8.1 HARDWARE ERRORS. The wuser interface handler won‘t
know about peripheral hardware other than disk and terminal,
although the application package hosted by the interface
might include exercise and diagnostic programs specific to
displays, plotters, digitizers, and film recorders.

6.8 2 OPERATING SYSTEM ERRORS. The user interface handler
should be designed to make the operating system transparent.
Operating system errors should not show up at this level.
If they occur during the execution of an application
program. they should be *treated as detectable programmer
erTors. :

6.8 3 DETECTABLE PROGRAMMER ERRORS. In the case of
detectable programmer errors, the application package error
handler must produce a message (preferably hardcopy) +that
states enough, succinct information to enable the
maintenance group {original supplier?) to sclve the problem.

217

This tuypically includes the wvalues of all of the control
parameters so that non—date—dependent eTTOTS can be
regenerated. Data dependent errars are harder — the image
data generating the problem may have to be kept available

6. 8.4 NON-DETECTABLE PROGRAMMER ERRORS. In the case
non—~detectable programmer errors, the application program
may behave very badly. Nasty program sborts. infinite
loops, incredibly unreadable operating system error messages
spew forth on the analyst’s console. These problems are
meant to be soclved as they show up, usually by the
embarrassed supplier or by frustrated in-house maintenance
staff. Fortunately, mature software packages have few of
this type of error. :

6.8 5 DETECTABLE OPERATOR ERRDRS. These consist of every
conceivable thing the analyst might mistype at his console.
The interface must catch &as many of them as possible,
without compromising the application independent nature of

the interface handler. All error messages at this level
might be kept in the control parameter dictionary - for
translatability. These messages must be worded carefully

and documented throughly.

6.8 6 NON-DETECTABLE OPERATOR ERRORS. This variety results

from legal but non-sensical operator set-up. On-line
documentation should be lucid enough for the
operator/analyst to wunderstand when he has made such an
error, and how to recover from the problem - usually by

restarting his procedure.

6.8 7 "LET’S STOP AND START OVER" ERRORS. These are the
most important ones. If the analyst has kicked off an
execution run and realizes that he hasn’t set it up the way
he meant to, then there should be some way, vis the
interface handler, to halt the entire process, recover files
that are in unknown states, fix his error, and restart. All
this must be done under the auspices of the interface, and
without waiting for the error to run to its natural (or

unnatural) completion. The solution to this problem
Tequires a lot of thought, especially when running nested
procedures. Usually a special application—dependent

clean—-up program or procedure must be invoked by the
interface after actual abortion of the application process.
Asychronous terminal I/0 must be employed. since the
keyboard cannot be left wunguarded while an application
process is executing wunder the interface. Some operating
systems may not support the necessary capabilities.

218

6. 2. PROGRAMMER INTERFACE

If the system designer has decided to opt for the sort of
user interface that 1 have been describing. and if he
decides to use a data dictionary approach such as is
appropriate. then large parts of the programmer interface
fall out as a by—-product.

The programmer of individual modules NEVER needs to consider
where, how and when he will prompt the analyst for control

input. He doesn’t have to compose messages and prompts. He
doesn’t have to loop back and reprompt if the analyst has
typed an error. He doesn’t have to «clear the screen and

write pretty menus.

In short, he can discard what typically turns out ta be
about 504 of his code, and simply say "GIVE-ME~FPARAMETERS"
to the control parameter dictionary. He may have to confirm
that some of these parameters have reasonable values,
because he will probably not want to confuse the interface
with too much conditional value checking. {This keeps the
interface application independent.)

All errors detected at this level will necessarily become
fatal., but the interface is there to catch your analyst
anyway.

219

7

The Expert Analysis System Interface (EASI)

PERCEPTRON has spent several man—years developing the
interface that I have just described.

EABTI is:

EASI

EABT

IMP,

|

A HIGH-LEVEL USER LANGUAGE (BASIC LDOK-ALIKE)

APPLICATION INDEPENDENT

BPECIALIZED FOR INTERACTIVE SCIENTIFIC ANALYSIS

A SINGLE SYNTAX USER INTERFACE

A PROGRAMMABLE INTERFACE

DESIGNED FOR DIRECT-TO-ANALYST USAGE

MODIFIABLE WITHOUT REGARD TO THE APPLICATION
PROGRAMS IT HOSTS

provides:

=3

DEFINING AND CHECKING OF PARAMETERS
EXAMINING AND EDITING OF PARAMETERS
MULTI-LINGUAL MENUING AND PROMPTING

A BASIC EDITOR SUBSET

A PROCEDURE WORWKSPACE WITH LOAD AND SAVE
NESTING OF PROCEDURES (INCLUDING RECURSION)
CONDITIONAL TESTING, BRANCHING

LOCAL ARITHMETIC

HISTORY LOGGING

AUTOMATION OF ON-LINE HELP

SPAWNING OF APPLICATION TASKS
INTERACTIVE AND FOREGROUND MODES
BACKGROUND AND BATCH MODES

optional, FORTRAN, programmer support library,

provides:

A SINGLE CALL TO GATHER ALL NECESSARY PARAMETER
FROM THE DATA DICTIONARY

CALLS TO READ AND WRITE PARAMETER VALUES FROM AND

TO THE DATA DICTIONARY
INTERFACE INTO EASI’S MENU/PROMPT CAPABILITIES

AUTOMATIC ASSIGNMENT OF LUNS FOR ALL PERIPHERALS

PROGRAMMER ERRCOR HANDLING ROUTINES
SEMI-AUTOMATIC OVERLAYING (RSX-11M ONLY)

user

220

8. The Pattern Analysis and Correction Expert (PACE)

PERCEPTRON has spent several more man—-years developing an
image processing and analysis package that runs under EASI.

PACE is:

— SPECIALIZED FOR REMOTE SENSING ANALYSIS

- INTERACTIVE AND BATCH

- HOST AND DISPLAY INDEPENDENT

— DESIGNED FOR DIRECT-TO-ANALYST USAGE

- ANALYST-PROGRAMMABLE VIA THE EASI INTERFACE

~ FORTRAN-PROGRAMMABLE WITHOUT MODIFICATION TO THE
USER-INTERFACE

- PACE provides:

DATA INGESTION FROM ANY CCT

FULL UNIDSK-84 ARCHIVING AND ENQUIRY
DEVICE-TO-DEVICE IMAGE TRANSFER

AN IMAGE FILTERING PACKAGE

SEVERAL LOOK-UP TABLE ENHANCEMENT CAPABILITIES
SEVERAL DATA TRANSFORMATION CAPABILITIES
SEVERAL DATA CLASSIFICATION CAPABILITIES
HISTOGRAMMING AND SCATTERPLOTTING

SEVERAL IMAGE AND GRAPHIC EDITING CAPABILITIES
IMAGE-TO~IMAGE GROUND TIE-DOWN FOR REGISTRATION
IMAGE-TO-MAP GROUND TIE-DOWN FOR RECTIFICATION

UNIDSK~84 provides:

UPWARD COMPATABILITY WITH CCRS’ ORIGCINAL UNIDSK-11
A MULTI-CHANNEL DATABASE FILE FORMAT

A SINGLE FILE STRUCTURE FOR IMAGE ANALYSIS

A HOST—-INDEPENDENT RANDOM (BLOCK) ACCESS FILES

— BINGLE-FILE STORAGE FOR ALL AUXILIARY DATA TYPES
({TRAINING-SITES, HISTOGRAMS, MATRICES, LUTS, ETC)
A CONCISE EASY-TO-PROGRAM SUPPORT LIBRARY
CONCIBE EASY-TO-TRAIN SOFTWARE APPLICATIONS
HISTORY TRACKING, DATA LISTINGS, COMMON ACCESS
SEARCHING, ARCHIVING, DELETION, UPDATING,
REPORTING, ASSOCIATION, ENQUIRY, EDITING: ETC.

i

|

t

221

222

RECEIVIMNG STATION —— HDDT

e
o F

,—v—f""“‘—’-ﬁ'
E———
HEKDLLPY Standard, Corrected CCT
Guick—Loak ,
HARRDCOPY
Car tography Special Products CCT
Visual Analysis

M% K\

HARDCOPY TURMKEY
Grround Cowver Interactive

Classification EIS Digital

Visual Analysis Analysis

e

New Applications

FPl: First Level Production Al: First Level Applications
PZ2: Saecond Lewvel Production AZ: Second Lewel Applications

FIGURE 1: Four Classes of Digital Imzge Processing Systems.

223

The Operator—FAnalyst Interfac

THE OFERATOR-AMALYST CONSOLE
ON—-L IME HELF
COMMAND PROTOCOL.
FPROGEAM CONTROL ACCESS
FROCEDURAL COMNTROL.
EDITING OPERATOR FPROCEDURES
HISTORY LOGGRING
ERROR HANDL ING

 hardware
apaerating systam
detactable programmar
non—detectable programmer
detectable operator

non—detectable operator
"LET'S STOFP AND START OVERY

11

Nm RN e

The Programmer Interface
Give m;_mg control parametars
Check to see if OK
I+ OK — Do the johb

Figure 2: Broad-Spectrum Definition of the USER INTERFACE

USER-INTERFACE

ERsI

parame tor

U

!

ee pavamstor
maenusspromp s

chaecking =R ofw

edit procedures
Load- sawva
workspace
history lLog
spool ing
reporting
on—Line help
arvrovr handlev

timing eto

interactive
background

batohk et

PLT I —L ITNGLIAL

TAILORED PROCEDLURES
SOFTWARE DEVELOPMENT
AFFLICATION INDEFPENDENT

L]

Figure 3I:

EASI-FACE -

224

Structural owverview

FPROGEAMS
FARAMETERS FROCEDURES
DICTIOMNARY PaCE
tilaenames INGE=T =
A | windows fi_fx TIE-DCIIMN) . [UNIDSKES
CIMP Y sizes . IMP Y CORRECT PACE DATABASE
MV bands NV TRaNsFER [N V| cocrsy
colours FILTER
weights ERHANCE
vaectors TRAIM
numbers CLAassIFY
pointers COLOLIR
MRS SE0aSs PLOT e ———
type etco HISTOGRAM =
SCATTER . Sy
EXPLORE YPACEY RASTER
. -
k| RATIO V| pisprLay
di=patch N REGISTER
1| Map atc
DISPLAY and
LU
INDEPERNDENT

