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1. INTRODUCTION

By treating radar imagery data extraction as a communication system in
which the target information is the source and the communication channel
is modelled according to the noise properties of the radar sensing
process, the information content of the image can be expressed in terms of
the average information rate which can be transmitted through that noisy
channel. In this paper the information rate is derived using fundamental
theorems of information theory for a commonly used model of the target
statistical properties, which allows to gain insight into radar image
formation effects like "look" summation and radiometric resolution. It is
shown that the information content per spatial resolution element of the
image is small for a low number (e.g. four) of looks. As a measure of
image quality an alternative definition of radiometric resolution, based
on rate distortion theory, is introduced which takes account of image
correlation properties. Similar derivations has been performed by Frost
et al for uncorrelated imagery (ref. 3).

2.  SAR IMAGE STATISTICAL PROPERTIES

2.1 Image Pixel Statistics

The statistical properties of speckled SAR imagery of homogenous areas can
be conveniently expressed by writing the observed pixel intensivity (I.)
in the form of: !

- n .
L= S o (1)
where:
S. = true (mean) reflectivity of the area:
L' = number of independent samples of intensity averages (looks) to form 11
n = random variable describing the speckle.

The propability density function (pdf) of n, assuming power detection is
given by:

nL-l e-n/Z

?Ejfyrjaj- for n >0 (2)

P(n) =
which is a chi-square distribution. Note that expression (1) separated
the observed intensity into:

a) a mean value component and
b) a signal independent multiplicative noise component.

The mean and variance of the component n are respectively:




E(n) = 2L 2 (3a)
Var(n) = o = 4L (3b)
The variapce of Ii is therefore:
_ 2 _ <2
Var Ii =g (Ii) = Si/L (4)

2.2 SAR Image Statistics

From the image pixel statistics derived in par. 2.1 the covariance of the
image data samples, identified by their row and column coordinates (i,p)
and j,q), is given by:

- 2
E{(Iij m)(Ipq m)} E(Iij,Ipq) m (5)
where,
m = image mean value = E(Sij)
and
1
E{I.. I = E{S.. S —— E(n.. n 6
ig Tog? ™ E1345 Spq7 57 (M5 Mg ®)
For uncorrelated speck]e
1
;EE 13 pq) i-p)s8(j-q)
Hence with (6),
1 2 . .
E{I.. I = S.. S + = .. - - 7
Ly Togh = B85 Sy + ¢ E6S353 s(i-p)s(j-q) (7)

where E{Sii} is the unspeckled image variance,

24 2 mly 2
E{Sij} oo, (8)
The image variance is thus given by:
EC(T,.-m)%) = o 2+ g 2
21J 2402 S Y
= S
where % r (9)

is the image variance due to speckle.

A commonly used model describing the statistical properties of an
unspeckled (i.e. target) image is given by a two dimensional first order
Gauss-Markov process of which the covariance matrix values are given by:

= - m) = .2 k p
%, =BG Chuk gap™ = 55700y (10)
where:
cSZ = image variance = E(S 2) 2
Pl = correlation coeff1c1e%t between row neighbouring pixels
oy = correlation coefficient between column neighbouring pixels.

The covariance matrix values of an image effected by uncorrelated speckle
is then given by:
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R(k,P) = E(I5 ;

2.3 Image Transform Statistics

M) (L4, gap ™) = 95781 0,740 25 (K)(p) (11)

Applying a two dimensional Karhunen-Loeve or Hotelling unitary
transforamtion of size N2 to the image defined in the preceeding
paragraph, it can be shown (Ref. 1) that the first and second order

statistics of the transform coefficients, Zn . are repectively given by:
0 for n,2 #0
E(Zn 2) = (12a)
’ mN for n =2 =10

n,2 = 0,....,N-1

2 2
EU(Zn,0-n,2) (Zp s‘“r,s)} = {os An82+cp } &§(n-r) §(2-5)

for n,e = 0,. ...N-l (12b)
where:

Mage T E(Zn,z)

A—ZlE{z }2/N2 2/2

nT oo 270, 95 % /9%

N-1
_ 2 2 2, 2
B2 = = E{Zn,z' “n,z} /NoS -cp /cs

What is Tearned from equation (12) is that:

a) the transform coefficients are uncorrelated and their variances
are product separable in row and column indices.

b) the variance of the transform coefficients due to speckle is the
same for all coefficients and hence the speckle component can be
regarded as an additive uncorrelated random variable to the
coefficient value given by the unspeckled image.

The properties of the second order statistics given by (12b) are satisfied
for a two dimensional cosine transform of transform size N - «» and the
variance of the transform coefficients is given by the two dimensional
Fourier transform of the image covariance function given by (11). Hence,

» - . krn amn
E(Z, pn b " kz:_; 5'; R, pexp-1{—N— + T} (13)
It follows for A, and 8, defined in (12b):
1-022
A = ' (14a)

1+022-202 cos(fgb
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l-p12
1+p, =20, cos(%T)

where the coefficient indices n, % are in the range of 0,1,...., N=1 with
N>,

3.  INFORMATION CONTENT OF SAR IMAGES

Considering the set of independent random variables derived from the
unspeckled image by a two dimensional K.L transformation as the
information sources and the speckle effect as being introduced by a
continuous memoryless communication channel we can derive the amount of
information which can be transmitted through these channels by computing
its average mutual information measure.

Because of the definition of the image model the distribution of all data
sources (the transform coefficients) is Gaussian with a given variance
while the aditive speckle noise approaches the Gaussian distribution
because of its contribution from many independent noise sources (central
1imit theorem).

However it should be noted that the closeness of the Gaussian distribution
for speckle noise is a function of the number of independent sample
averages (L) and the amount of image correlation. Its approximation
improves with increasing value of L and increasing values of the
correlation coefficients 01 and Poe

Assuming the Gaussian distribution of speckle and data sources, its
corresponding mutual information measure yields a lower bound to the
mutual information derived from a non-Gaussian speckle distribution.

Because the derivation of the mutual information for the Gaussian channel
is relatively straightforward it is pursued first. Thereafter an
estimation of the exact value of the mutual information is obtained by
interpolation of the differences between the mutual information of the
non-Gaussian and the Gaussian channel for the conditions of uncorrelated
imagery (p1=pp=0) and fully correlated imagery (oq=pp=1). For the
Gaussian channel the mutual information equalizes its channel capacity
given by:

E{Z, -E(Z, )}2
1 N-1 N-1 RS 15
c="—% l0go 15
2N =0 %70 op°
With N > =, we can apply equation (14) and (15) becomes:
2 2 2
1 f g5 (1=017)(1=0,")
C = ——— f J log, |1+ dw, dw
272 0 2 2, 2 2, 2 1772 (16)
p (1+ol -201 cos wl)(l+p2 -292 CoS Wy
mh g’
where Wy =«E- and w2 =-a-

The double integral (16) can be solved analytically for one variable,
say for wy. The result is given by:
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1 |
C =7 log, pl_.l. Tog, b(w_)dw

where b(w ) is defined by:

-1 2

o

b=a "{l-(1-a")%}
20, (1+r) F(w,)
T e D) (1) Flwy) + L(1-p,%) (1-0,%)
m2 |
r 052

Flw,y) = 1+022-202 cos w,

The channel capacity for a given value of r (image mean square to
variance ratio ) as a function of image correlation coefficient (p = o
= pp) with the number of "looks" (L) as a parameter is shown in figure
la.

From the parametric equations of (20) it can further be derived that,
L
a) the ratio e can be taken as a independent variable.
b) the channel capacity for an uncorrelated image is given by:
L .
= 1 L

szo 3 1092 (1 l+r) (bits/sample) (18)
The mutual information of an uncorrelated image for the chi-square speckle
distribution is derived in the annex, which results yield values which are
30 to 40% higher than those for the Gaussian channel. The notion that the
difference reduces monotonically to zero for completely correlated imagery
(i.e. pp = = 1), provides a mean to estimate the exact amount of mutual
information %dashed lTines in fig. la).

3.1 Information Content per unit area

The parameter which specifies the information content per unit image area
is particularly useful in comparing systems with different number of
looks. The information content per unit area is given by:

C_ . o hpaUlmr v by (v )4y, ) (19)
dy dp dg, dop T (Lmy )4y ML (T=y )4y, )
where:
da’ dr = spatial resolution in repectively azimuth and range

direction.
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d ,d = area of specified "unit area" of dimension d in azimuth
oa” r : oa

and d,p, in range.

CO = Capacity relvant to "unit area".

Las Ly = number of looks in respectively azimuth and range
direction relevant to d; and d,.

Loa» Loy = number of Tooks in respectively azimuth and range
direction relevant to dga and dgp.

Yoo Yy = Took overlap in respectively azimuth and range
direction.

) are depicted in figure 1b for the condition L_.. =1,

The results of (1
Loa = 4,2Ya = Yr
Ly = 4Lp~for p =
variance image).

9
= 1/3, La = 4Ly and the total number of looks L QrLa

0.7 and r = 3 (high variance image) and r = 9 (low
Figures la and 1b show that the information content per unit area is low
for relatively low number of looks. Taking the typical case of the Seasat
or ERS-1 radar sensor, when the range and azimuth resolution of the
processed data is approximately 25m, it is evident that for a typical
correlation coefficient of 0.7, the information content is only 0.2 - 0.35
bits per resolution square area with four look processing. Note that this
is only about 50% of the information per unit area provided by an optical
sensor using 8 bit pixel quantization with a spatial resolution of 80x80m
(1ike Landsat III). In other words the ratio between the information
content per 8 bit sample of an optical and a radar sensor is at least 15
to 1.

4.  RADIOMETRIC RESOLUTION

Rate distortion theory learns that for an information source with variance
2, transmitting through a communication channel with C bits/sample
capacity, the minimum mean square error of the reconstructed signal is
given by:

2

D(C) =0 720

(20)

Applying (17) to each of the channels with the transform coefficient
Z(n,2) as information source, the channel capacity is, using (15) and
(12b):

-

cz(n,l) +02p
C(n,z)_; 3 log, ¥, (21)
5 P
where: o%(n,2) = ¢ s*n 8,
The minimum error per channel is then upperbounded by:
oz(n,z)cz
D(n,2) = — PZ (22)
o“(n,e) +o

P




The total distortion can be derived for transform size N »«, for which
(14) applies. It follows:
o2 025 (1- -0, 2 dw1 de

m T
- 0.2 2
00

F.(w.) = 1+p.2 - 20, COS W,
i i i

The double integral (20) can be solved analytically for one variable say
wi. The result is given by:

D (1+r)(1-0;2)(1-p,%) dw

T _ 1 2 2
W) - 7 % (24)
m mrl {an (Wz) + bFz (Wz) + ¢}

0

where:

1+r,2 2.2

2= (07 (10
2

b = <1{r><1 -0, %) (1-0,%)
¢ = (1-0,%)% (1-0,7)?
qd = m2/0 2

A commonly used measure of radiometric resolution is given by (expressed
in dB)

rq = 10 10910 (1“’?) (25)

Using (24), the value of ry has been numerically evaluated as a function
of image correlation coefficient o = P = Pp with (r) and (L) as
parameters (see figure 2).

Note that for p = 0, (25) becomes:

] Ly~
(Y'd)pzo = 10 ]Oglo [lﬂ“{\"(l“'mﬁ} 2J (26)
Applied on a sample per sample basis (25)becomes with (3):
1 _ 1
ry c 10 10910 (1+ //L) (27)

which value is often used as a measure of image quality. The minimum
distortion value however, which is a function of look number and the image
characterisation expressnd by its covariance matrix, provides a more
realistic measure of image qua]wty This is because image interpretability
obviously does depend on (local) image first and second order statistics.
The results of figure 2 show a dramatic improvement of radiometric
resolution over the sample radiometric resolution for low numbers of
Tooks. The distortion bound ranges from ~ 1.1 dB at r=3 (high variance
image) to ~ 0.9 dB for r=9 (low variance image) for four looks (L=4) and a
typical correlation coefficient (p) of 0.7.
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The distortion upperbound can be readily achieved by performing an image
processing operation consisting of, 2D-KL transform, transform coefficient
weighting and 2D-reverse K.L. transform. The transform coefficient
weighting factor W(n, ) is derived from (22), i.e.

o2(n,1)
W(n,8) = ————s (28)
cz(n,£)+02p

where cz(n,l) = OZSAnB is the transform coefficint variance of the
unspeckled image which“can be determined from the transform coefficients
Z(n,1) according to (12b).

The selection of transform size is a compromise between adaptability to
statistical variations from block to block and the accuracy of weighting
factor estimation. Adequate block size values are 8x8 or 16x16 image
pixels, while the transform can efficiently be carried out by the
two-dimensional cosine transform which performs very closely to a KL
transform.

5.  SUMMARY

The results of the analysis on the information content of SAR imagery in a
homogeneous area show that there is little information per spatial
resolution element as compared to e.g. imagery generated by optical
sensors with the same spatial resolution. This means in particular that
terrain classification procedures, which operate on a sample basis are
unworkable for SAR imagery (unless the number of looks is very large).

The dependence of information content per unit area on the number of looks
is consistent with experience in SAR image interpretation (e.g. image
interpretability of homogeneous area is about equal in the range of say 1
to 8 looks with a slight preference for low number of looks) (Ref. 2).

However, using the estimates of the spatial sample correlation within a
relatively small area (e.g. 64 or 256 samnples) the radiometric accuracy of
the image sample can be dramatically improved as compared to the single
sample accuracy. For example 4 look SAR imagery of moderate activity
(mean square to variance ratio of four) gives 1 dB radiometric accuracy
using the spatial correlation information, while at least 16 looks are
needed to achieve the same radiometric acuracy measured on a sample basis.
A two-dimensional cosine transformation followed by adaptive coefficient
weighting can be applied to achieve this performance.
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ANNEX

Information content for uncorrelated image samples

The average information content per sample, in case of uncorrelated
samples, is given by the mutual information measure:

T(X,Y) = H(Y) - H(Y/X) , - (AL)
where: .
A1) = = [ £, () Tog, () dy (A2)
O © po0
H(Y/X) = -J J f (y/x) fx(x) 1092 f (y/x) dxdy (A3)
0’0 p p

and ® '
£ y) = Of (9% f,(x) d

where fy, fp, fy are respectively the probability density functions of the
unspeckled image, the speckle and the speckled image. It can be shown
that for the conditional pdf of the speckle component derived from (2),

L-1
H(Y/X) = 1og2(L-1)1 -1092L—(%l%) ;Zi %--é}+ J fx(x) 1092 x dx (A4)
n j=
0

where C = 0.5772... is Euler's constant.

The entropy values of (A2) and (A4) has been numerically evaluated for the
source intensity distribution given by,

fx(x) = fg(x) + fg(-x) for x > 0O

2‘
where f_(x) is the Gaussian distribution with mean u and variance og .
The comparison with the computed lower bound of I(X,Y) is performed with
the same value of
_me_
QSZ’

The results are given in the table below.

r where m=E {f, (x)} and (22 = E{fx(x)}% = E{fg(x)}2

r=m2/

1 1 1 r |
| s 21 L 1 I(XY) | ¢ |
i S| | | °=0
1 ! t 1 1
| 3 | 1 | 0.22 | 0.161 |
l | 5 | 0.74 | 0.585 !
| | 10 | 1.27 |  0.804 |
| 9 | 1 | 0.09 | 0.069 |
f | 5 | 0.37 | 0.292 |
| | 10 | 0.64 | 0.500 |
l a | u 1




C(bits/sample)

C/dadr(bits/unit area)
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Figure 1b Information content per unit area
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Figure 2a  Radiometric distortion vs correlation coefficient (p)
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Figure 2b Radiometric distortion vs n2 of looks (L)
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