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ABSTRACT

A great problem - especially in images with low signal-to-noise ratio (SNR] - is the
failure of the correlation function. In this paper four different objective functions for
the correlation process are compared in a statistical test on identical images with added
random noise of different magnitudes. An analytical formula for the correlation proba-
bility depending on image SNR is derived for each objective function. Methods for SNR

~ estimation in images with unknown noise are presented. One main result is that in
~imagery of low SNR other functions than the normal correlation function should be
applied. Highest correlation probability shows the phase correlation method.

Introduction

One central problem in remote sensing and photogrammetry is the automation of the
human eye's capability especially the stereoscopic viewing and object identification.
The digital computer controlled solution of this problem leads to correlation techniques.
The notation "correlation” is used in a generalized sense as a method for point or object
identification. Therefore different objective functions for the correlation process are
thinkable and already in practical use (EHLERS. 1982b].

In photogrammtry these parallaxes can be used to derive a terrain model or to pro-
duce an orthophoto; in remote sensing they serve for image rectification or change de-
tection. For the latter case the Institute of Photogrammetry at Hanover University de-
veloped the software correlation-rectification system DISCOR (DISCOR = Digital soft-
ware correlator for image rectification] (EHLERS. 1983].

One main disadvantage in correlation process is the possibility of incorrect parallax
calculation, especially in images with a low signal-to-noise ratio [(SNR]. In photogramme-
try the influence of image noise on the correlation or pointing precision has been in-
vestigated for instance by FORSTNER 1982 or TRINDER 1982, On the other hand in re-
mote sensing the main problem is not the precision. but the probability of the correla-
tion function. Due to different sensors. different scales and different recording condi-
tions of remote sensing imagery the identification of homologeous points is very diffi-
cult. Remotely sensed images are often contaminated by noise and have to be pre-pro-
cessed before further evaluation (EHLERS, 1982a). An example is given in fig.1-3.

Fig.! shows a photogrammetric image (frame camera] of the city of Cologne (Federal
Republic of Germany). Fig.2 and 3 show the same part in LANDSAT and SEASAT imagery.
Especially the SEASAT-radar channel contains a high noise level. In order to avoid noise
induced miscorrelation. functions other than the ‘normal’ correlation function have been
proposed (PRATT, 1974; KUGLIN and HINES, 1975; BAILEY et al., 1976: EHLERS.,
1982b].

In this paper the effect of image quality on the correlation probability will be investi-
gated to estimate the connection between both variables. One main aim here is to de-
termine the correlation function with the smallest probability of failure. This is tested
with four different abjective functions in an empirical-statistical manner on the DISCOR
system that is part of the Hannover digital image processing system MOBI-DIVAH
(DENNERT-MOLLER et al., 1382].
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Fig.1: Aerial photography [frame cameral Fig.2: LANDSAT MSS image

2

Fig.3: SEASAT radar image

Mathematical Basis

image and noise model

Im remote sensing the ground signal is changed before and during the recording process.
The ariginal image-signal glx,y} is disturbed by various influences, e.g. atmaosphre.
intensity of light, sensor sensitivity. digitization etc. Errors due to these reasons can
be divided into recording (including atmospheric effects] and quantization errors. In
the following we assume that atmospheric and recording processes add random naise

n' to the original signal. Thus the recorded signal g' can be written as

g'lx.yl = glx.y) + n'(x,y] {nl

Analog/digital transformation produces two effects. The finite scanning aperture size
causes low pass filtering with a filter function h" superposed with additional electronic
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noise (CASTLEMAN 18781.

g"lx.yl = g' * h"[x.,y] + n"[x,y] {2
setting (1) into equation (2) the digitized signal g" can be written as

g"lx.y]l = g * hix,y} + nlx.y] ’ {3)

using the abbreviationsn=n'* h" + n" and h = h".
Hence the digitized image signal g" consists of a filtered deterministic part g * h and
a stochastic component n.

Correlation model

Folloawing (3) two independent recorded and sampled images of the same area can be writ-
ten as

g1" = gx*xhyp+my

(4]

92" = g*hz+ng
Aim of the generalized correlation is to derive unknown geometric transformation
between gi" and go".

Usually this is done by minimizing an objective function that measures the distance
between the grey values in small subimages, the correlation windows. Additionally an
image transformation can be possible. So abjective functions for the detection of iden-
tical points consist of a function M ('metrics'] for distance measurement and a transfor-
mation parameter T for image preprocessing. An often used function for instance is the
sum of squared differences between the grey values. T can change the image signal
(e.g. filtering) and/or the coordinates (e.g. considering different perspectives). The

task of the objective function is to find (Ax. Ayl. so that M will be minimized:

M{Tlgy"(x.y)., Tlgo"lx + Ax, y + Ay} = Minimurn (5]
Ax, Ay

Objective functions

As at the evaluation of remote sensing imagery (especially from satellites]) usually ter-
rain differences and perspectivities can be neglected ([KONECNY, 1978]. in the following
the transformation parameter T only effects the image intensities considering no geo-
metric conditions. With this simplification four correlation functions are integrated

into the DISCOR system: ‘

al The 'mormal' product moment correlation coefficient which is equivalent to a square
{BGaussian) metrics. The transformation operator is the identity operator.

b) The correlationn intensity coefficient. which has been derived from coherent optical
considerations. The image signals are mapped onto the complex plane and the inten-
sity of the complex correlation function is computed. The coefficient is weighted
by a parameter p depending on the variances in the correlation windows. The metrics
M again is Gaussian, the transformation operator T is the complex exponentiation
(GOPFERT, 1980). ~

c) The Laplace coefficient, i.e. the same of the absolute differences of the image sig-
nals with an absolute (Laplacian) metrics M and the identity operator T.

d) The phase correlation coefficient, i.e. the inverse Fourier transform of the norma-
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lized cross spectrum of both images. Hence only the phase differences are considered.
M again is Gaussian. T normalizes the cross spectrum in the frequency domain (KUG-
LIN and HINES, 1875]. :

It can be shown by using Fourier transform theorems that the functions a) and d] are

special cases of a generalized filtered correlation function

(EHLERS. 1883).

Table 1 lists the objective functions, their one dimensional unnormalized mathematical
expressiaon, the metrics M and the transformation parameter T. The symbols (.]* and [ I

stand for Gaussian and Laplacian metrics respectively.

Table 1: DISCOR objective functions for correlation

Objective function

Math.expression
{unnormalized)

Metrics T-Operator

al product moment
correlation co-
efficient

b) intensity co-
efficient

cl Laplace
coefficient

dl phase
correlation
coefficient

In the following chapter the correlation probability is studied an

T g1(x)galx + Axldx

- GO

(£ casplg(xl-gglx + Ax)dx)?

<

(/7 sinpylgy(x)-golx + Ax)dx)?
S| g1xl-galx + ax)[dx

© GY(FIG,(F) 2 jf Ax
[°° ﬁff]Gz[f] © df

(G[f) = Fourier transform

of glxJ:

(.12

()2

(.J2

G(F) = S7gtae? ¥ ax ith j = /7T )

different artificial noise distributions.

Correlation Probability and SNR

Image material

T{g(x]] = glx]

Tlglx)) =

e-ip-glx]

Tlglx]] = glx]

1

T(G(f]] = W

statistical tests with

As test image a digitized section of an aerial phaotograph with an original scale of

1:50 000 has been chosen (fig.4). Due to the high SNR in photogrammetric pictures

this image is used to simulate an undisturbed original ground signal. It is assumed to be
noise-free. Now random noise in different magnitudes and distributions is added to the

reference signal according to (3). The meanSNR in the noisy images can be estimated by

SNR =

Ellec

(8]




143

where og is the mean value for standard deviation of image signal and "4 is random
noise mean standard deviation. The test has been executed with 20 different image
noise levels with an SNR ranging from 60.8 to 0.8. The noise was Gaussian and uniform
distributed.

Fig.5 and 6 show two noisy images with an SNR = 2.6 and 1.0 respectively.

Fig.5: Search image (SNR = 2.6)  Fig.B: Search image (SNR = 1.0]

The differences can be seen more clearly in fig.7. showing the same line in the refe-
rence and the two disturbed images.

In the reference image 20 correlation test points have been chosen on the digital DIVAH
screen. The correlation points are the centers of 11 x 11 pattern matrices. In the noisy
images the corresponding search matrices have the same center coordintes and a size
of 30 x 30 pixel. Within these windows the correlation coefficients for all possible
pattern matrix positions are computed. With the ‘a priori knowledge for correct corre-
lation we can estimate the correlation probability for every objective function. Fig.8
shows the reference image with the bordered pattern matrices.
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Fig.7: Line in reference image (left]), image with SNR = 2.6 {middle] and image
with SNR = 1.0 (right)

Fig.B: Reference image with correlation points

Test results

The correlation test shows no significance on the applied kind of noise distribution
so that we can combine all the results. Only the SNR values are considered.

The SNR is computed in every correlation window and summarized in 18 different

SNR classes. In each class the correlation probability for every objective function is
calculated. The result can be seen in table 2. A probability of 0.5 for instance means
that 50 % of the correlation paints in the corresponding SNR class have been recognized

correctly.
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Tab.2: Correlation probability and SNR

Probability with objective function*)
SNR a b c d

< 0.10 0.00 0.00 0.00 0.00
0.13 0.00 0.00 0.00 0.36
0.18 0.06 0.12 0.00 0.47
0.25 0.44 0.17 0.00 0.67
0.31 0.44 0.38 0.00 0.63
0.39 0.57 0.57 0.00 0.93
0.43 0.71 0.79 0.00 0.86
0.49 0.62 0.69 0.15 0.77
0.57 0.88 0. 94 0.06 1.00
0.66 0.08 0.88 0.00 0.94
0.76 1.00 1.00 0.17 1.00
0.86 0.94 1.00 0.24 1.00
0.96 0.92 1.00 0.25 1.00
1.25 1.00 1.00 0.33 1.00
1.75 1.00 1.00 0.63 1.00

3.50 1.00 1.00 0.95 1.00
7.50 1.00 1.00 0.98 1.00
>10.00 1.00 1.00 1.00 1.00

+) a = product moment correlation coefficient
= intensity coefficient (global variances])
c = Laplace coefficient

d = phase correlation coefficient

o

For an easier interpretation it is convenient to develop a mathematical expression of
the relationship between probability and SNR.

Mathematical approximation of correlation probability and SNR

To obtain an analytical expression of the connection between noise and correlation
probability P, the P-values are plotted versus the corresponding logarithmic SNR. We
get an S-shaped curve with an almost linear increase in the medium domain (see fig.9].
For an analytical formulation we have to approximate the probability functions consi-
dering the boundary conditions

limp=20

SNR + O
and

limp-=20

SNR - =

An easy analytical solution can be given by the 'logistic growth curve'

VS E— (6)
]+e—81X—GD ;

which has been set up first by VOLTERRA for population processes (WHISTON. 1874].




146

Far the estimation of the parameters ay and a| we consider the expression log -]\':—y of
equation (B]:
Iog% =logy - logll-y] = ajx + ag
in gur case
o 15531—5[5? = a; logSNR + ag (7]

Fig.9 shows the approximated curves P(SNR] for all objective functions according to
(7). Also their 95 % confidence interval and the measured probabilities p are plotted.
The significance of the fits has been verified by chi-square-testing.

Objective function classification

To classify the correlation functions limiting values are extracted fram fig.8. The para-
meter Sg_gs. 59,50 and Sg_gs denote the SNR witha probability of 5 %. 50 % and 85 %
respectively. Table 3 presents the estimated parameters with their upper 85 % confidence
interval.

Table 3: SNR values with P = 0.05. 0.5 and 0.85

95 %

Objective 85 % 35 %
Fuﬁ’ction 8&05 confidence  S0.50 confidence S0.95 confidence
a 0.14 0.24 0.34 0.50 0.82 1.40
b g.15 0.26 © 0.34 0.40 0.76 1.25
c 0.42 0.76 1.40 2.20 4.60 12.00
d 0.06 0.12 g.19 0.28 0.50 1.00

The classification criteria listed in table 3 allow us to come to the following conclu-
sions:

{i]  Best correlation probability is shown by the phase correlation method d). A SNR of
1.5 or lower in our imges requires the application of this objective function to achieve
mast probable correlation.

(ii] The objective functions al and b] have almaost the same probability of correct cor-
relation shawing no significant differences. Sa other criteria (e.g. precision or computa-
tion time) may decide which one has to be used. If image SNR is above 1.5, functions
al, bl and d] can be employed without preference.

(iii] A poor probability is associated with function cl. the Laplace coefficient. Wrong
correlation even accurs at an image SNR of 9.0. Although a very fast function (BAILEY
et al., 1876). it shows unsufficient probability and should therefore be handled with
care in the correlation process. '

With these limiting values it is possible to cantrol the application of objective functions
in an automatic manner. If the SNR is known. it is possible to decide which correlation
function can be chosen and to estimate the according a priori correlation probability.
So the image SNR is all an automatic correlation controller has to know. But how can
this be calculated if image and noise are almost inseparable ?
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Fig.9: Probability and SNR of product moment correlation coefficient al, intensity co-

efficient b), Laplace coefficient c] and phase correlation coefficient d) (from

top to bottom]
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Estimation of image SNR

The crucial point of all investigation is to find a good 8NR estimation because normally
intensity and distribution of noise is unknown. So simplifying assumptions must be made
to derive SNR values from noisy image signals.

A posteriori SNR estimation can be done using the values of maximum correlation or
grey level differences (FORSTNER, 1382; TRINDER. 1982). But doing sa. we cannot
avoid incorrect correlation. Therefore-we-need-an-a priori noise estimation.

We assume that all superposed disturbance effects can be regarded as white noise n.
i.e. having a constant power spectrum

PlF) = N3 (@)

P is the noise power spectrum. Né the constant intensity. A typical power spectrum
Pg of image and noise is shown in fig.10.

Intensity
A

Gn
Fig.10: Power spectrum of image and noise

The variances o%, for noise can be estimated by

o = Ng
So 02 can be estimated in a representative image part according to (8). This ¢f is con-
sidered to be valid for all correlation windows. Image and noise can be regarded as in-

dependent stochastic variables. Hence the variance o 4 of the undisturbed signal g can
be calculated as difference of o& . the variance of the disturbed signal g'. and g .

93 =051 -of =og -Ng

So simple variance computation in a correlation window yields the corresponding SNR:

Qz,‘NS ‘
SNR = |-3— (9)
Na

Equation (9) is used to estimate the a priori probability P to avoid wrong correlation.
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Small scale distortion effects

Another part of the statistical test was to find the effects of small scale image distor-
tions on the correlation probability. Here pixel displacement of fractional pixel size
are considered. Pixel distortions are simulated by anisotropic (translation) and isotro-
pic (rotation) spatial filtering. The translation filter matrices can be written as

( (1 - dx)dy dx dy )
(1 - dx)(1 - dy] dx(1 - dy]

with (dx. dy) the displacement vector in x- and y-direction (0.5 s dx.dy < + 0.5]. The
filter matrices associated with pixel rotation a can be denoted as (-m/4 £ a S+ w/4):

0 a 0
(a b a)
0 0

a

with a = [cosa + sina - 1]23/4:sin®qa
und b= 1-4a.

The test results solely effect the geometric precision but not the probability of the
correlation functions. Without superimposed noise only 2 test results [~ 0.02 %) show
deviations more than 1.0 pixel. Only the geometric precision is influenced by pixel
distortions. With additional noise the correlation probability does not differ significant-
Iy from the results obtained without translation and rotation. So equation (7] and table 3
can be applied as well.

Conclusions

WIth the presented formulae for correlation probability and image SNR an a priori esti-
mation of the expected correlation accuracy can be given. According to the image qua-
lity in a correlation window it is possible to decide which objective function should be
used and to calculate the probability of correct (or wrong) correlation.

If a correlation point shows too low SNR, it can be neglected or the SNR (and the corre-
lation prabability) can be increased by low pass filtering or by extending the correla-
tion window (EHLERS. 1983). According to (7] correlation probability is referred to only
one reason: the SNR. All known methods to raise correlation probability. e.g. filtering
or enlargement of the correlation window are doing nothing else but incr easing the local
SNR at the correlation point. The values of the correlation maxima have no influence
on the correlation prabability. This corresponds with previous results [(EHLERS, 1882a).

Naturally this study tries to answer only one question about correlation quality. Simpli-
fying assumptions for noise and signal have to be made to derive an analytical expression
for probability and SNR. Only small geometrical differences have been considered and
different quantization errors have not been investigated. Finally the definition of SNR
includes only the image variances neglecting such important features as texture para-
meter, edge direction, significant pattern etc. Therefore SNR-definition should be ge-
neralized in this sense.

One main result of this paper is that we must consider objective functions other than sole-
ly the normal correlation coefficient. The phase correlation method shows less suscepti-
bility against low SNR and should therefore be applied in noisy images. So future cor-
relation systems should be open to include these and prospective results. They shouid
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contain the opportunity to generalize the objective function, i.e. the metrics and the
transformation operator. Also picture preprocessing and variable choice of window size
should be feasible. This is anly possible on a software solution conveniently embedded
into a digital image processing system.
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