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ABSTRACT

Least squares regression using bicubic spline functions is
discussed. The computational aspects are detailed for a
parameterization with tensor product B-splines. The special
case of gridded elevation observations is analyzed and the
application of array algebra for this case is presented. A
derivation is given for the array normal equations which ties
in closely with the corresponding derivation for the classical
least squares normal equations, and demonstrates the
equivalence of the two approaches.

On—~line guality assessment is investigated using the spline
regression and a post adjustment analysis of the residuals.
The residual analysis is performed by finding a maximum test
statistic of externally studentized quadratic forms and
associated critical values. The critical factor of bicubic
patch size (or basis function spacing) is shown to influence
the effectiveness of gross error detection. The particulars of
this influence are presented as results of a statistical
experiment using Digital Terrain Model, DTM, data and
artificially induced ’‘spike’ blunders.

1. INTRODUCTION

The use of digital terrain models for collecting, archiving,
and graphically displaying topographic information is becoming
increasingly accepted. Consequently we are experiencing a
distinct transition from pure theory and research into the
practical aspects of application to photogrammetry and
cartography.

Terrain elevation data can be gathered in a manual mode from
analog stereo instruments. Increasingly, however, various
forms of computer assistance are being rendered in this often
tedious process. Buch assistance can range from automatic
stepping in an analytical stereo instrument to a complete
automation of the stereo perception and height sensing
operation. As automation plays an ever larger role, the data
may be created in prodigious guantities.

On=-line quality control checks of observation data would be
viewed as beneficial by many production managers. By this
means one could minimize the risk of corrupting a data base,
and minimize the resulting effort of cleaning and restoring
the data base which is found to contain significant errors.

From a more abstract point of view, the fundemental tasks in
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digital terrain modelling are:
(a) To observe a continuous surface at a set of discrete
points, and
(b} To reconstruct, within error tolerances, the surface from
the sampled points.
Step (b) implies the existence of a mathematical model by
which one “fills in’ the reconstructed suwface between the
samples. Step (&) does not explicitly require such a model.
If, however, a quality control check is incorporated into the
observation process, then the existence of a mathematical
model becomes necessary as a criterion to check for
consistency among the observations. Thus the formation of a
model is an important component of the process of collecting
and using digital terrain data.

The terrain surface, unfortunately, is not expressible as an

xact mathematical function. This is contrasted with the more

tractable problems of photogrammetry and geodesy wherein well-

Enown functions relate the observations and the unkrown

parameters. From the foregoing description of the general DTHM

problem, two specific and important issues have been extracted
and chosen for investigation:

(1) Can we obtain a mathematical model or models which will
follow arbitrary terrain shapes, and vet remain reasonably
concise for efficient computation 7

(2) Can we devise an automated algorithm to check observations
for gross inconsistency with the model, and hence for
inconsistency with the terrain surface 7

2. THE MATHEMATICAL MODEL

The fact that most DTM data is collected in a regularly
gridded pattern suggests using a surface function which
expolits this regularity. Bicubic, tesor product spline
functions possess this capability and were thus chosen for
this investigation.

A two-dimensional tensor product function function mav be
thought of as a combination of two one-dimensional fuctions.
I+ we have f(¢) and g(y), then the function:

(2-1) hi,y) = F{x) % gyl

ig called the tensor product of f and g and may also be
denoted by:

(227 h =+ @ g

This iz analogous to the way in which a bivariate density
function is constructed from the univariate density functions
of two independent random variables. If the two component
tfunctions happen to be E-splines, then the resulting ‘hill’
function is referred to as a tensor product B-spline. Two-—
dimensional spline regreszsion may be performed using the two-
dimensional EB-=pline basis functicons rather thanm the usual
polyrnomial pasrameters and constraints. The unkriowns that we
zoglvae for in a lsast squarss estimation are the cosfficients

of & ‘matrix’ of overlapping basis functions.
Fecalling the gridded pattern of the hesight observations
suggests the Uuse of what has become known in the




25

photogrammetric/geodetic community as array algebra (Rauhala,

1978). Under certain conditions of the mathematical model and

of the observation pattern, this method allows a greatly

. reduced computational effort to solve what appears to be a

much more massive problem. The conditions under which it may

be used -are: )

(1) The parameter coefficient matrix or design matrix of the
mathematical model must be decomposable into a kronecker
product

(2) The cbservations must occur in a full, gridded pattern

(3) The observation weight matrix must be decomposable as in
condition (1)

The spline model, the gridded observations, and the assumption

of uncorrelated, equal precision observations together fulfill

these three conditions.

The following represents an outline of the derivation of the
normal equations for the case of a 'seperable’ model and
gridded observations. The condition equations may be written:
(23 V + BiABzt = F

in which V, y and F are rectangular matrices. It is
equivalent to the classical formulation:

(2-4) v + BA =

in which B is decomposed as:

(2-5) B = Bi @B

and correspondxngly the weight matrxx:

(2-6) W= Wi @RW=

where x® is the reverse kronecker 'product. In the

classical approach we minimize the quadratic form of the
residuals:

(2~7) VEWY —» minimum

Under our chosen assumptions the quadratic form may be written
equivalently as:

(2-8) VEWY = tr (WaVeW, V)

where tr () indicates the trace of the matrix

brackets. This equality is proven in Neudecke.

this new evpr9551on for the guantity to be minimized, we solve

Equation 3) for the parameter matrix, & , subject to the
condition that'
(2-9) tr (W=VeW, V) -> minimum

Expanding this and using the derivative of a trace with
respect to a matrix (See Turnbull, 192320), we obtain after a
number of algebraic steps:

(2-10) (B1*W1B1) A (Ba*WoEz) = BitW.FW
Using auxiliary matrices, Equatlon (”—1UY gecomes:

This represents the narmal equations for the array or
multilinear model. It may be solved by triangular
decomposition or by inversion, depending on the explicit
need for the inverse(s).

Z. GROSS ERROR DETECTION

Having fit a bicubic surface to a set of height observations,
we now wish to examine the residuals for the existence of
possible outliers. The full quadratic form for the entire set
of residuals has the form:
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{(Z—-1) g% = weiv
We partition the observation vector, and likewisze the residual
vector into two parts:
(Z-22 1 = Irll Vo= Vo

12 Vi
such that 1, is sufficient to define the model , and _.
lz is a (usually small) subgroup to be tested for the
presence of grosse errors. If the adjustment were carried out
using only the 1, set of observations, we would obtain
the reduced guadratic form:
(I3 Elz = Vltw:‘\";
in which Wi corresponds to the 1; set. This reduced
quadratic form, §2, will always be of smallsr value than

the full guadratic form, g=. It has been shown (Stefanovic,
1978) that the difference:

(3=4) d = g8 - g=

can be obtained from the results of the original full adjustment
bys

(E=5) d = va®*Qoaea"vo

in which Bezvz is the submatrix of the full @ou. which
corresponds to the subvector vz. Thus, &* itself may

be obtained without recomputation of the adiustment by ‘
rearranging Egquation (3-43., The redundancy, or degrees of

freedom in the adjustment is denoted by r. The number of
residuals in the test group vz is p.

We are, in general, looking for a situation‘iﬁ which d is largs
in relation to its degrees of freedom, and g% is small.
This suggests forming the following ratio:

/o™ X p

SRRy P ~ Yl
‘ ?z/ o= X s

r-p r-p
and look for that partition of v which ma 1mi:es this test
statistic with respect to its distribution under a null
hypothesis of mo blunders. Thi=s maximum Lhiwsquared ratio
(MCER) 1s an example of ‘external studentization’ and has been

sugges sted by several statisticians (Cook, 1982). In order to
obtain a preliminary idea of what the denmsity function of the
MCSH would look like it was decided to simulate this random
variable using monte-carlo methods. A program was developed
to obtain n NO,1) deviates using a library pssudo-random
number generator. For each of p=1,2,3,4,5 the maximum of:

2 *
(3=7) /7
. 77*,9 / n-p
was tound and tabulated as an entry in a histogram for sach of
the p's. As a check, a numerical approximetion of the
distribution has also been achieved by starting with the basic
random variables in the MCSR and proceding via the

mathematical propagation of distributiocns. This has beesn
implemented in a s=sries of computer programs, and rFuns have
been made to duplicate the cases estimated by the histogram
simulations. Figure 1 shows one final MCSR denszity (the

shaded curve) overlaysd with the histogram from the
simulation. They should be representing the samnes fun”flﬁﬁ and
it iz =een that the agresment is reasonably good. Thi
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provides some confirmation that the analysis and its numerical
realization are valid. A flow chart of the strategy for
analyzing the observations for gross error detection is shown
Figure Z.

4. EXFERIMENTAL ANALYSIS AND RESULTS

The approach investigated here for guality control of on-line
DTM acqguisition involves checking small areas of observed
elevation ‘posts’ and insuring that these observations are
free of gross errors. This checking may take place
immediately following observation, i.e. on-line, or at a later
time in & batch mode. In either case, the small check regions
would successively cover the entire data set so that all
observations would be subject to the test for blunders. In
the experiment described here, the check region is a sguare
arega having 1é6x16=256 observations.

An inherent characteristic of terrain topography is that the
‘order’ of the surface representing it changes from one
geographic area to the next. Significant variation in this
surtace order may often occur within a single photogrammetric
model , or certainly within a guadrangle or map sheet
cartographic wunit. This presents an apparent difficulty to
the guality assurance analyst, or to an automated eguivalent,
in trying to insure that the raw obssrvations define an
approdimation to a valid topographic surface. The naturally
occurring variation in terrain heights will be confounded with
any observation errors. Thus an algorithm for detecting large
observation errors should address the question of this
possible confounding and how it may vary with terrain
character. An intuitive approach to surface fitting for
different terrain types would involve densifying the mesh of
bicubic patches of the spline function for 'higher order’

or more rugged terrain areas. Ideally, the residuals after a
swrface should be comparable in magnitude to the uncertainty
in the observation process. The purpose of the experimsntal
work described here is to look at the effects of terrain type
and mesh density (model type) on the sffectiveness of the
gross error detection algorithm.

The degree to which a patchwise polynomial function can
conftorm to an irregular surface is directly related to the
mesh size of the patches. If the mesh size diminishes to the
point where the number of parameters is equal to the number of
sample peints, then the fit will be perfect as there is no
redundancy. In this experimental work, four mesh sizes have
been chosen for modelling the léxlé point sample regions:
model one: 1 patch, model two: ZxZ patches, model three: 4x4
patches, model four: B8x8 patches. Two of these are shown in
Figure 2. The experiments involved selecting examples of
differsnt terrain types (classes) from a DTM data base, and
artificially injecting ‘spike’ blunders. The blunders were
introduced singly and in multiples with magnitudes of five and
ten feet, whers the sample spacing was I2 fest. The surtace
functions at four mesh densities were fit in esach case and the
‘success’ (percentage of valid detections) was assigned a
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Figure 2. Flowchart of Strategy for Blunder Detection
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(8x8 patches)
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‘Figure 3. Data Sample and Two Spline Models
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score between O and 1. An important consideration was the
relation between the terrain class and the spline mesh density
(model). A summary of the scores are given for model 1 in
Table 1.

There are significant differences between classes for several
of the size/number combinations for models one and two. In
addition, for both model one and two the most significant
effects occur for the small error magnitude. Also interesting
is the fact that the class effects are apparent but not
significant for models three and four. It appears that there
is a significant degradation in the blunder detection ability
with a low order model in high order terrain, but the reverse
does not hold. To some extent, this confirms what one would
expect from an intuitive point of view. The factor, size of
blunder, was not tested but, as expected, the effectiveness of
the detection algorithm is in every case higher for the large
size blunder. Similarly, no testing is done for the factor of
number of blunders, and no consistent pattern appears here.
This itself is useful information, however, in that the
algorithm (as intended) appears to function in the presence of
multiple blunders (up to three) without serious degradation.

S. CONCLUSIONS

In summary, it has been demonstrated that it is possible to
detect and isolate a small number of gross errors in gridded
DTM observations in a manner suitable for on-line
implementation. This has been accomplished by fitting, via
least sguares, a simultaneous patchwise polynomial (bicubic
spline) to a small set of observations and analyzing the
residuals for the presence of outliers. The statistical
testing of the residuals is done through an externally
studentized guadratic form, for which the maximum occuwrrence
is found (maximum chi-squared ratio, MCSR). The critical
values of this statistic are derived and this derivation is
believed to provide more accurate critical values than other
approximate methods. The bicubiec spline modelling approach,
while used as an intermediate step in the blunder detection,
has obvious utility in the more extended application of
interpolation over large data sets.
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Table 1. Summary of Experimental Results for Model 1

MODEL 1

1=BLUNDERS
CLASS1 cLAss2 CLASS3 CLASS4
SMALL .800 ,800 ,000 ,333
5 5 1 3
LARGE 1.000 1.000 .857 657
2 5 7 5
2~BLUNDERS
CLASS1 CLASS2 CLASS3 CLASS4
SMALL .875 . 750 .100 .000
8 4 5 3
LARGE 1.000 1.000 . 750 .000
4 7 g 3
3-BLUNLERS
CcLASS1 cLASS2 CLASS3 CLASS4
SMALL : .944 .750 . 467 .200
g 4 5 5
LARGE 1.000 1.000 1.000 .800
4 7 4 /////// s
ELnssz .920 N= 29 cell
LASS2 .308 = 32
CLASS3 819 = 28 mean
CLASS4 .287 N= 31
number of
observations
SMALL ,558 N= 80 :
LARGE .858 N= &0 in the cell
1-BLUNDERS .700 N= 40
2-BLUNDERS -650 = 40

3-BLUNDERS 773 N= 40
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