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Abstract

Different methods for terrain description and classification are presented.
Descriptive classifications are known from geology. These descriptions have
also been formalized using the concept of stochastic processes. Other clas-
sification methods are based on Fourier-transformation, classifying the
terrain types according tc their frequencies of undulations. Recent approaches
are based on the concept of selfsimilarity, Observing the presence or lack

of similarity of micro- and macro structures in the terrain. A comparison

of these classification models is given and the applicability of these mo-
dels for interpolation and other deductions is discussed.
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1. DIGITAL TERRAIN MODELS REQUIRE MODELLING

"I should see the garden far better’,
satd Alice to herself, "if I could get

to the top of that hill: and here is a
path that leads straight to it — at least
no, it doesn't do that ~ but I suppose it
wtll at last. But how curiously it twists!
It's more like a cork-skrew than a path!
Well this turn goes to the hill, I sup=
pose - no tt doesn't. This goes straight
back to the house! Well then, I'll try it
the other way!"

During the last decennium, Digital Terrain Models (DTM) became rather im-
portant for various tasks of photogrammetry, such as orthophoto production,
high accuracy processing of scanner data and others. The name Digital Ter-
rain Model is however misleading. A DTM is a programme package consisting
of routines for data storage, data retrieval, editing, interpolation and
contouring. It is often a subsystem of a Land Information System, and is
rather an Elevation Information System than a model.

In order to properly understand the behaviour of the terrain forms and
their Information Systems, a model of the terrain is necessary. But what
is the concept of a model? According to the positivistic school of philo-
sophy the complete understanding of the terrain form and its evolution is
impossible for the human mind. We may well describe it with the help of a
hypothesis, or a model. Such a model defines observable quantities and re-
lationships between them (Weyl, 1949). The concept of a model allows de-
ductions on the properties of the terrain and on the outcome of new obser-
vations. These deductions may refer to the point density necessary for samp-
ling, to the accuracy and.quality of interpolation and contouring, or to
criteria for the detection of blunders in measurement.

We may define many different models for the terrain. Their value is judged
by the criteria of completeness, unigueness and simplicity. A model should
be complete, that is, it should enrich our understanding of the terrain as
much as possible and it should not be easily disproveable by results of ex-
periments. The model should be unique in that it allows unique deductions.
Finally it should be simple: if two models behave otherwise equally well,
the simpler model containing less hypothesis and less quantities is to be
preferred. ’

Models for the terrain have been defined in various sciences. Geography and
its subscience Geomorphology supply a vast body of knowledge on terrain
forms and - characterization.

Geology and in particular Mathematical Geology, describes the geological
processes and also their product, the terrain form. In Applied Mathematics
and Statistics terrain is described by various concepts. The following
sections give a short review of the major models in use and of their rela-
tionship, :
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Precambrian basement, Norway Sedimentary rocks, Greenland

Fig. 1. Two types of terrain.

2. TERRAIN MODELS IN GEOMORPHOLOGY

"What's the use of their having names”,
the Gnat said, "if they won't answer to
them!.

"No use to them'", said Alice; "but it's
useful to the people that name them, I
suppose. If not; why do things have names
at allz?" :

Geomorphology, a discipline of geography, is concerned with the descrip-

tion of the form of the earth and its genesis. In large scale, geomorpho-
logy describes the terrain forms interesting to photogrammetry and their

evolution in time.

Terrain forms are classified according to their genesis by folding, erosi-
on, sedimentation and other processes. Terrain forms are also classified
by their magnitude and extend, as well as their roughness. These latter
entities are related to the genesis of the terrain (Kriger, 1974; King
1966) .

Let us, as examples, consider two different types of terrain (Figure 1).
Firstly, sedimentary rock landscape in Washington Land, Greenland (G) and
secondly precambrian basement landscape south-east of Oslo, Norway (N).
The sedimentary rock landscape shows large, relatively smooth land forms,
while the Norwegian terrain shows the typical rugged structure of basement
rock. Although the sedimentary rocks show considerable larger undulations,
both in elevation and extend, they appear relatively more smooth than the
Norwegian basement rock.

A considerable number of parameters have been proposed in order to des-
cribe the spatial variations of the tarrain. The three most important
are:

Relief, which describes the vertical dimension of the terrain and which
is defined using the extreme values of the elevations. Local Relief is
defined as the difference between the highest and lowest elevation with-




in a specified area of given extension. In order to eliminate the depen-
dence of the definition on this reference area, the concept of Relative
Relief is introduced, by dividing the Local Relief by the extend of the
reference area (its diameter or perimeter). Relative Relief is a dimen-
sionless quantity; its dependence on the extend of the reference area
and its freguency distribution allows classification of terrain accor-
ding to roughness and genesis.

Slope is possibly the most important parameter of terrain forms, because
it controls the gravitational forces available for geomorphic work (Evans,
1972). The slope is the first derivative of the elevation in arbitrary
direction, or in the direction of steepest descent. On a macroscopic
scale, slope is defineable at any point of the terrain, except at break
lines. Slope SL is either measured as angle or in percent of inclination
of triangular facets in a regular grid, or it is measured by derived quan-
tities like the roughness factor RF = 100(l-cos SL), Mark (1975).

Wavelength or extend of the terrain form is the third important parameter
here mentioned. The wavelength in a terrain profile is defined as the
average distance between successive (local) maxima or minima. This wave-
length is measured in length units (meters) and may be studied in various
characteristic directions. Its relationship to the magnitude of the ter-
rain forms can be ideally studied by Fourier Transformation (see section 3).

The terrain forms may be classified with respect to these three parameters -
relief, slope and wavelength, to their magnitude and their fluctuations and
with respect to their mutual relationships. These parameters will be our
basic reference when studying other models of the terrain.

3. TERRAIN MODELS FROM FQURIER SPECTRA

"If any of them can explain it", said Alice,
"I'LL give him sixpence. I don't believe
there 71s an atom of meaning in it'". "If
there 1is no meaning in it', said the King,
"that saves a world of trouble, you know, as
we needn't try to find any'”.
The terrain may be described in form of a Fourier series, and many of the
above parameters may be directly related to the coefficients of the series
(Ayeni, 1976; Tempfli and Makarovic, 1979; Frederiksen et al, 1978; Frede-
riksen, 1981; Tempfli, 1982). Any continuous and continuously differentiable
function Z(x), 0 € x < L, can be expanded into a uniformly convergent Fourier
series

21 - 221
7 = - —— e s g —_—— g e
(%) aO + Z af cos ( . xf) + X bf SLn(IJ x°£) (1)
where a_ and b_ are parameters and f is a relative frequency related to the
length L of the profile.

This model may be used to describe terrain profiles in function of their
sine - and cosine components. Equally, twodimensional terrain may be trans-
formed, using twodimensional Fourier series expansions.
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Fig. 2. Fourier-spectra from profiles in Greenland and Norway.

The relationship between afg, bg, £ and L can be studied by means of the
power spectrum S. In order to compensate for the influence of the varying
length L of the profile, the spectrum can be written as function of the
absolute frequency F = £/L

B R 2
S(F) = S(L) =L (af + bf) (2)
or as a function of the wavelength A = %-= %

The representation of the terrain in the frequency domain greatly simplifies
the separation of various surface forms. -

The following model proved to be valid for a large domain of F:

S(F) =E - 7 % ‘ (3)

where o and E are characteristic parameters for the terrain (Jacobi, 1980).

The relationship is experimentally verified for our two terrain examples
(Fig. 1) and the result is shown in Fig. 2. The average spectrum was com-
puted for a large number of profiles in both areas. Relationship (3) proves
valid for wavelengths 1/F ranging from 50 to 10.000 meters. On a double
logaritmic scale log § is linearly related to log F. The slope o of this
line is significantly larger for the Greenland terrain than for Norway

(2.8 versus 2.3). In general, if the slope a of the spectrum is larger

than 2.5, the landscape is smooth due to the absence of high amplitudes

at high frequencies. On the other hand, a slope less than 2.0 indicates

a rough surface with relatively large variations of high frequencies.

Relationship (3) implies that the surface characteristics are independent

of the scale of observation. In particular, for o = 2 the landscape loocks

the same independent of the scale at which it is observed, the amplitudes

and wavelengths of the surface details are on the average directly propor-
tional.

Based on this model, the suitability of different interpolation methods
can be studied and the accuracy of interpolation and its dependency in the




sample spacing can be derived. Jacobi (1980), Frederiksen et al (1978) and
Tempfli (1982) proved that the accuracy ¢ of interpolation is largely in-
dependent of the method of interpolation; it depends mainly on the spacing
D between the sample points and the surface characteristics a: a2 Drop p-1t,

4., TERRAIN MODELS FROM RANDOM FUNCTIONS

" This conversation 1s going on a little
too fast; lets go back to the last remark
but one’.

Another class of terrain models is based on random functions. We shall de-
fine a random function as a function Z(x), the value of which for any wvalue
x of its argument is a random variable. The argument x is considered a non-
random argument. This concept may be used to describe the elevations of a
terrain profile as a function of the profile length x.

In order to characterize the random functicon, the knowledge of the density
distribution pr(2) of the values Z for different arguments x is necessary.
The random function can be considered to be defined if all multi-dimensio-
nal density distributions are given for any values x,,x PR ST Although
this often can be done, this method is not always convenient. Hence, in the
majority of cases we limit ourselves to specify selected parameters of these
density distributions. One can choose various quantities as such parame-
ters, however the most convenient are:

- The expectation or mean

+ o
m(x) = E{2(x)} = [ z-pr(zlx)dz (4a)
- The variance
o2 (x) = var(z(x)) = E{(2(x) - m(x))?} (4b)

and

- The correlation(covariance) function

K(Xl’xz) = E{(Z(xl) - (X)) (Z2(x,) = m(x )) ) (4c)

2

where E{-} denotes the mathematical expectation of the argument. The corre-
lation function describes the correlation between the two random variables
z(xl) and z(xz).

A very important property of a random function is the dependence or inde-
pendence of its distribution function on the origin of x. In accordance
with this, stationary and non-stationary random functions are distinguished.
For stationary randem functions, the mathematical expectation and variance
are constant and the covariance function depends only on the difference of
the coordinates x,-xy, which is also called lag d. A second attribute which
is also used as the basis of a classification of random functions is the
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form of the density distribution function of Z. The distribution law most
frequently assumed is the normal law, although this in many cases is not
a proper model for elevations. -

For a stationary random function, the Fourier Transform of the correla-
tion function K(d) is equal to the power spectrum S(F), (2) (cf. Champeny,
1973) . For the model (3) for terrain spectra the correlation function K(d)
follows from the inverse Fourier Transform approximately to

K(d) = o? - c-d®; B = (a-1), (5)

This model is a suitable model for terrain profiles, in particular if o2
is chosen sufficiently large.

Modelling the terrain by the correlation function is in principle possible,
but estimation of the variance and the correlation is difficult in praxis.
This has two reasons: Firstly, the elevations are not normally distributed;
and individual extreme elevations or local flats have undue influence on
the estimates. Robust estimation of the variance and correlation is neces-
sary. The fluctuation of the elevations is estimated from their median
(Crliger et al, 1984), correlation is estimated by rank correlation methods
(Kendall, 1948). :

Secondly, long trends or semi-systematic fluctuations seriously distort
the estimates. A proper manner to tackle this problem is to estimate the
correlation function from visual inspection of the terrain profiles, and
to describe large regional terrain forms by an appropriately large corre-
lation length (which may equal or exceed the profile length) and by a cor-
respondingly large variance (cf. Kubik, 1975). Once these parameters are
chosen large enough, the deductions in the model become independent cf the
exact numerical values of these parameters.

The above pitfalls in estimating the correlation function may also be over-
come by relaxing either the condition of stationarity or the condition of
normal distribution. The notérious long tailedness of most empirical histo-
grammes may in many cases best be interpreted by accepting the possibility
of an infinite variance *), This means in everyday language, that the vari-
ance of height fluctuations in the terrain profile increases with the pro-
file length.

In order to avoid this somewhat unmanageable value «, we may model the
differences of elevations instead of the elevations themselves. De Wijs
(1972) , Matheron (1971) and Mandelbrot (1982) all proposed the variance
of the difference (Zi—Zj) for modelling terrain forms, Var(Zi-Zj); (8)

This quantity is also called (difference-)variance function, and it de-
pends, for stationary differences, only on (Xi‘xj) = d. For a stationary
function Z(x), the variance function may be related to the correlation
function by '

var(d) = 2(0? - x(d)). (7)

Assume, that the distribution function has a tail decreasing slower than
1/Z°. Then the integral in (4b) will fail to converge to a finite value.
We accepted the idea of a very large variance already before when model-
ling trends.
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Fig. 3. Variogrammes.

For the terrain model (3), the variance function results to

B; b constant. (8)

Vvar(d) = b-d
Figure 3 shows examples of variogrammes (estimated variance functions) for
our terrain example. The variogrammes are plotted on double - logarithmic
scale, the slopes of the curves B = 1.3 and 1.8 are in good agreement with
the slopes a = 2.3 and 2.8 of the corresponding spectra of figure 2.

The concept of variance function and variogramme is extensively used in the
geosciences to model geological, geochemical and geophysical phenomena (de
Wijs, 1972; Clark, 1979; David, 1977; Mandelbrot, 1982). In these models

it is very important to allow the variance function to tend towards infinity
for the lag d - = in order to allow the modelling of trends and large scale
forms. This was properly recognized by de Wijs and Mandelbrot, whereas it
1s forgotten in the other litterature which uses bounded variogramme func-
tions.

5. SELFSIMILARITY

"Tt's really dreadful,'" she muttered to
herself, "the way all creatures argue.
It's enough to drive one cerazy'.

The beforenamed terrain models can in an elegant manner also be derived

by the concepts of Selfsimilarity and Fractals, which were introduced by
the mathematician Mandelbrot (1968, 1969). By studying various natural
phenomena, Mandelbrot observed a form of invariance with respect to changes
in scale, and he introduced the concept of selfsimilarity to describe this
phenomenon. The increments of a random function are said to be selfsimilar,
if the increment Z2(xq+ Bx) - Z(xq) is in probability equal to the h times
larger increment Z(xq+ h-Ax) - Z(xq) divided by the scaling factor hY,

- *
{Z(xl+Ax) - z(xl)} é {n Y(z(x1+h-Ax) - Z(Xl))} ); Y constant (9)

A o _ .
*) The symbol = denotes, that both sides have equal distribution functions.
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This concept may be illustrated in the Norwegian terrain. Figure 4 shows
two drawings of the same profile at different scales. Both these drawings
look very similar in their structure and their scale or scale relation can-
not be derived by mere inspection of the drawings.

Based on this definition of selfsimilarity, Mandelbrot introduced ran-

dom functions, called "Fractals", which possess this property and from
which - under mild restrictions - the terrain models (3), (5) and (8)

can be deduced. These Fractals are in principle deduced by a Yth-summa—
tion (integratigg) of inggpendent random variables. Although we are only
familiar with 17 - and 2 order summations (cf. the error theory of strip
triangulation; Vermeir, 1954; Ackermann, 1965), a fractal summation or
integration of order Y (Y ngninteger) may be defined by extending the clas-
sical definition of the n integral to noninteger values n = Y (Holmgreen-
Riemann-Liouville fractional integral, cf. Levy, 1953)

p:¢
Z(x) = K(Y) * [ (x-s)7 ' aB(s) (10)
O

with dB normally distributed, independent and equally accurate increments
(white noise) and K(Y) a constant depending on Y. The constant Y relates
to o and B by Y = #(B+1)= % a. The concept of Fractals is recently applied
very intensively to model and classify terrain forms, cf. for example Ha-
kanson, 1978; Shelberg et al 1982; Goodchild 1980, and Mandelbrot 1975.
Much more attention for this concept is expected in future. ‘

In analogy with fractal integration one may define fractal differentiation,

(O)Z, d(l)z, d(Z)Z...

as a unique function of Y passing through the points &
In this fashion.we model the terrain profile by a (stochastic) differential
equation. This differential eguation may be used in finite element approxi-
mations of the terrain (Kubik, 1971!; Bosman et al, 1972; Ebner, 1979). The
proper functional to be minimized in the finite element approach is
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Fig. 5. Interpolation with Fractals.

(v) 2
J = J{LTZT} dx » min (11)
X ¥

The results of the finite element method (11) are identical to the results
of the Prediction method using variogramme (8) or the correlation function
(5), as it was shown already in 1971 by Kimeldorf and Wabha (see also Dolph

and Woodbury, 1952; Kubik, 1973). When interpolating with the prediction
method (Wiener, 1949)

-1
= © K .
Z (%) K(X,Xi) (Xi'xj) Z(Xj) or
- (12)
Z = - : - .
(x) var (x xi) Var(xi xj) Z(xj)
(with Z(x4) vector of sample values) the numerical stability of the compu-

)
tations sgould be carefully controlled. When using variogrammes, as advo-
cated by few, the smallest elements occur along the diagonal of the matri-
ces involved; the matrices are not positive definite. The accumulation of
rounding errors is very serious and meaningless results are obtained when
using desk top computers without special precautions. The authors there-~
fore recommend the use of the correlation function (5).

Figure 5 shows scme examples of interpolation. For B = 1 we obtain linear
interpclation, for f = 3 piecewise 3rd degree interpolation (Spline-inter-
polation), and for B values between one and three we obtain interpolation
forms, which properly model break lines in the terrain while preserving
relative smoothness in the other profile sections (cf. Botman and Kubik,
1984) .




6. WHICH WAY TO GO?

"Would you tell me please, which way I
ought to go from here?" asked Alice.
"That depends a good deal on where you
want to get to', said the Cat.

Which way do we want to go in modelling and classifying terrain forms?
There are many questions still open, which may help us to choose the di-
rection of future research: .

- The models and classification methods must be systematically tested on
their validity for large scale applications such as in photogrammetry;

- Interpolation methods, which are most adequate in the light of these
models, must be elaborated;

- An extention of the theory of fractals to twodimensional terrain forms
must be realized.
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