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Introduction

Least squares methods are widely used in photogrammetric
and geodetic computations. One problem in least squares methods
is assigning a priori weights to different observations and
parameters. Another is the detection of noises that are the
size of the random errors. The author has developed a method
of detecting noises and compensating for them in a recursive
adjustment method. This method was successfully used in the
detection of movement in an Electronic Distance Measurement
Instrument (EDMI) calibration. This method has both photo-
grammetric and geodetic applications. The objective of this
paper is to present the theoretical account of this method.

Theoretical Background

The optimum estimate X of some value x will be defined
as the value of x estimated if it minimizes the function

E{(x =~ ﬁ)T Q(x - Q)IZT} where x - % is a column matrix,
(x - i)T is the transpose of x -~ %X, Q is a symmetric, posi-

tive definitive matrix, and E{[ZTl} denotes the conditional
mean operator given the available data vector Zt defined

at time t or at the tth iteration.
The optimal estimator, which is the conditional mean, is

. given by

=[x p(x/Zt)dx . 1)
Q

where

Q space of all x

p(x/Zt) = conditional probability density function of
x given the data vector Zt

Extending the function to include a functions in terms of
a joint probability we will have
x=ff=p (x,a/Zt)dadx
QA

where A = space of all a,

Now p(x,a/Zt) = p(x/u,ZT) . p(u/ZT). Then
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x = [ [ xpx/a,2.) - p(a/Z.)dadx
2 T T

J I x p(x/a,Z )dx - p(a/2;)da
AQ

i

I ﬁu p(a/ZT)da

A
Now
p(Z, /a,) P(a,)
pa,/2,) = — k1 = (2)
;z% P(Zkfdj) p(aj)

In an iterative process, p(Z /a.) and p(a.) can be computed
from the current iteration; then p(d./Zk) can be computed for
the next iteration. *

As iterations proceed, the weights of Xy with small proba-
i
bility will tend toward zero and those with large probabilities
will tend toward one.

Applications in General Least Squares Adjustment

In least squares adjustment the set of observation equa-
tions is given by

AX - £ =V

where matrix £ is the o?servations with variance covariance
of Z or weight P, = 2 °, matrix X is the parameters, and
matrix A is the coefficient matrix.

Sigce the parameters are unknown, we have variance of

L2, z, = Zv, variance of V.

j

The least squares solutions of the parameters are given by
x=@paalpe
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where
c2 _ VT PV
0 n-U
n = number of equations
U = number of parameters
Now

AZXAT+22

o P\‘I = Z‘-ll = (A zx AT . 22)'1

Now Equation (1) could be written as

X = I p(x/Z)xi

which can be compared with

Z P, x,
i Ti
2P,

1

where Pi is weight and p(x/Z) is probability.

By
557 pi(x/Z)
i

or

Pi o pi(x/Z)

Thus,

3)

(4)
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From

v, = A X - £ (5)
p(vi) =p(2)
"L P(v.) a P(2.)
1 1

The residual V can be assumed to be distributed as a normal
distribution with mean zero and variance given by the diagonal
term of Zv given by Equation (3):

. ~ ~2
.. p(vi) = N(O, UVi

)

2/ 2
1 N ("’i / Zci)

Thus in Equation (2) we could substitute P(¥,) for proba-"-
bility p(ai). b

) = pla;) (6)

and P§ for the conditional probability p(Z/ai).
i

°.-,{ Pvi = p(z/dij = Z;ii given by Equation (4) (7)

Data Snooping Procedure

On the basis of arguments given in the two previous para-
graphs, a procedure could be developed for reducing the weights
for weaker observations in an iterative procedure and thereby
obtaining the most likely determination of the parameters.

The recommended procedure follows:
a. Based on a priori knngedge of the observations,
assign weights P = 22 and perform a least squares

adjustment.

b. Compute vV and Z; using Equations (5) and (3).
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c. If vi >> 3 05 reject these observations by assigning
i
.. = @ and repeat steps a and b. This helps elimi-
Zél
nate blunders.

d. Now compute P- using Equation (4) from which the value
for p(Z/u,) can be obtained (see Equation (7)). Then
1 .
p(ai) can be computed from Equation (6).

e. Knowing p(Z/a.) and p(ai), the new weights P for
subsequent adjustments can be computed from équa-
tion (2):

p(Z/ui) p(di)
P B
ii 2 p(Z/ai) p(ai)

and 2 new least squares adjustment is performed until

02
[¢]
. i+1
F(a, r, 1) > —
%.
i
where
Gg is the variance of unit weight after
i+
irl the (i+1)th iteration
2 . . . .
Uo is the variance of unit weight after

Lth :
the i hvlteratlon

F(u, r, r) is the F distribution with r degrees
of freedom and o confidence level

This process assigns new weights for each observation or
constraint parameter depending on the residuals and their
variance after adjustment. Any suspicious observation or
constrained parameter will be gradually weeded out or will have
less effect on the final adjusted parameters. Iteration can be
stopped either by using the F test or after the second or third
iteration until satisfactory solutions are obtained. ’

Results

The procedure suggested above was used to detect errors in
an EDMI calibration and found to be satisfactory.

In the EDMI calibration baseline, there were 5 monuments
with the distances between them (W, X, Y, Z) known with certain
precision (Fig. 1). Twenty combinations of the distances
between the monuments were then observed by the EDMI for cali-
brating it, and the errors in constant and scale factor of the
EDMI were determined by least squares using a computer program.
Table 1 shows the results of calibration. In order to test the
validity of the theory and procedure discussed earlier, the
program was modified to recompute with different weights for
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Table 1

Calibration Using Data Snooping Method

Standard Calibration Iteration 1 Iteration 2 Iteration 3
Observa~ Observa~
tion Wt Residual tion Wt Residual Wt Residual Wt Residual

598.7386 1 0.00003 598.750 1 0.0099 0.003 0.012 0.003 0.012
748.8924 1 -0.002 748.8924 1 -0.0033 0.048 -0.002 0.056 -0.002
908.1247 1 =0.0002 908.1247 1 -0.0007 0.062 -0.0005 0.092 -0.0003
1369.2343 1 -0.0015 1369.2343 17 -0.0020 0.061 -0.001 0.138 0.0004
598.7419 1 2.06033 598.7419 1 0.0018 0.058 0.004 0.055  0.003
150. 1486 1 -0.005 150.1486 1 ~-0.005 0.027 =0.005 0.007 =-0.007
209.3820 1 0.002 309.3820 1 ~0.002 0.055 ~0.003 9.027 -0.004
770.4949 1 0.002 770.4949 1 -0.00007 0.063 ~0.0005 G.077 ~0.0007
748.9003 1 0.005 748.9003 1 0.0048 0.4630 . 0.006 0.036 0.006
150.1529 1 =0.0007 150.1529 1 -0.0012 0.062 -0.001 0.015 ~0.003
159.2277 1 ~-0.0004 159.2277 1 =-0.0010 0.062 -0.001 0.016 -0.003
620.3375 1 =0.0017 620.3375 1 ~0.0020 0.055 -0.0014 0.055 ~=0.002
908.1249 1 0.00004 208.1249 H -0.0006 0.063 ~0.003 0.091 =0.0001
309.3856 H 0.0015 359.3856 1 0.0014 0.060 0.0004 ’3.633 =~3.4601
159.2243 i ~0.0038 159.2243 1 -0.005 0.035 -0.004 0.091 ~0.4306
461.1125 1 G.0037 461.112 1 0.003 0.0649 0.004 3.038 G.003
461.1130 1 0.0041 461.1130 1 0.003 0.045 0.005 0.033 0.004
620.3424 i 0.0032 620.3424 1 0.003 9.041 5.5403 0.048 0.003
770.4948 1 -0.00027 770.4948 1 ~-0.35001 G.663 ' -0.00086 0.4738 -0.0007
1369.2322 1 -0.0036 1369.2322 i -3.004 " 0.044 ~-0.003 0.093 ~-0.002
0, = 0.0029 : 0.0038 0.0006 0.0006
C = -0.0022 ~5.0012 -3.00239 ~0.000008

i
]

=0.0000059 =0.5000058 -0.0000069 =0.50060098
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Fig. 1. Calibration baseline.

each iteration. Computations were done after imtroducing an

error of 0.012 in the first measurement. It can be seen from
Table 1 that the error of 0.012 was picked up from the second
iteration onward and that the weight of each observation was

ten times that of the first. These results confirm the theo-
retical findings.

Conclusion and Recommendation

It appears that the method of recursive weight assignment
successfully computes the parameters, compensating for small
errors. Thus, the method described is an effective data snoop-
ing technique justified by theory. The method is very well
suited in least squares adjustment.

It is recommended that this method be further studied and
applied in large aerial and terrestrial triangulation adjust-
ments.
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