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ABSTRACT

A brief review of the Gentri system for bundle adjustment is given.

The point by point processing utilised in Gentri lends itself to a
straightforward computation of the band part of the inverse of the normal
equations. The algorithm and data structures for that computation is-
presented. For each point the following is computed in the last iteration:

final ground point co-ordinates

co-ordinate error estimates

image co—ordinate residuals

residual error estimates (redundancy numbers).
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All necessary data is then available for blunder detection, determination
of reliability and estimation of variance components (a posteriori variance
estimation).

SUMMARY OF THE BUNDLE ADJUSTMENT

The bundle adjustment system Gentri is designed with the aim to incorporate
geodetic and other observations along with the photo observations and
adjust them simultanecusly (Larsson 1982a, 1982b, 1983).

In order to process data efficiently, a suitable data structure was developed.
The necessary data is divided into three groups, namely photo data, observa- .
tion data and point data.

The observation is always connected to one pheto and one point, and serves
as the primary search wnit. From each cbservation, all comnected data can
be accessed. This structure could with success also be applied to other
types of observations.

The choice was also made to process all cbservations to one point at the
same time. The idea was fruitful because a point observed geodetically could
easily be discovered and ke processed accordingly.

This approach made it possible to access both the observations and the points
in sequence, whereas the photos were accessed at random. The number of photo
accesses were minimised with a suitable preparatory sorting of the input
data, together with a dynamic allocation facility for photo data.

Other advantages were the immediate reduction of point unknowns and that the
submatrices for the reduction of each point could be saved on an intermediate
sequential file for later use.




DERTVATION OF THE SOLUTION

The basic equation for bundle adjustment is based on collinearity between

the point on the ground, the projection centre and the point on the photo.

If this nonlinear equation is

F(1, x) =0 ' cee (1)
then an approximate solution % is computed. At X, the function is
linearized

6F ., , SF

1 % dx = F(1, x) oo (2)

Now, with x a vector of unknowns and F a vector of functions, (2) is a
linear system of equations which can be solved for dx. A better solution
to (1) is then

X =X+ dx ee. (3)

The equations (1) can be detailed as follows:

Fp(lp, Xp } =0

Fi(lir Xpl Xir Xa) =0 oo (4)
F,(1,, Xg) =0

where

Fp and lp are the functions and the ficticious observations for the
control points,

Fij and 1; are the collinearity functions and photo co-ordinate

observations,

Fy and 1, are ficticious or actual observations for the additional
parameters.

Xy are the unknown point co-ordinates,

X5 are the unknown photo orientation parameters and

b4 are the unknown additional parameters.

The corresponding linearized system of equations are

V +Bgx =W

or ,
Vo | | A 0 0 dxp| | wp
Vit A Ajj Al axi| = | wy e. (5)
A o) 7 0 +Agall dxg Wy

where

A.. are the matrices of partial derivatives of the functions with
respect to the relevant unknowns,

V. are the vectors of residuals and

w. are the vectors of discrepancies.

From (5), a system of normal equations is computed:
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Npp  Npi  Npa| [d%p 9
Nii Nig dxi | = | ui ee. (6)
synm Naa dx, Ug
where

de, dx; and dxy are unknown corrections to point co-ordinates, image
orientation parameters and additional parameters, respectively, and -————— -
1 4 '
Npp = App App + Aip Aip
7
= A%p Ai i
Npa = Aip Aia

A4
Nii = Aii Agd

¥
Nia = Ajj Aja
1 '
Nag = Aja Aja * Aaa Aaa
L 1 \
L4
Ui = A Wi
¥ v
Uz = Aja Wi *+ Aaa Wa

Above was mentioned that the unknowns for point co-ordinates, dxp, were
eliminated from the system. This leads to a reduced system of normals

[ =

| Ni;  Nia| f(dxyg ol u ‘ e
\Synm Naa dxa Ga
where

- Y
Nij =Njj = Npi Npp™ Npi,

- ¥
Nia = Nia - Npi Npp~! Npa,

Naa = Naa - Néa Npp~! Npa,

u; =uy - Néi Npp~™! up and
- 1 .

ua = U - Npa Npp 1 uP.

This reduction yields the wellknown banded bordered system of normal
equations, Nijj is banded and Ni is the border. Thes matrices are large and
to be processed in the computer, they are divided into submatrices, each
containing a number of normal equations. Each submatrix or block is stored

in a record of a random access disk file. This situation is shown in Figure 1.

During the decomposition of the normal equations, each block will modify a
number of equation coefficients. The coefficients altered by the decomposition
of the upper block in Figure 1 is shown shaded.

The decomposition of Ny is

- -1 - - T -

Tip dxi + Tii7! Njp dxa = Ti370 U4 ee. (8)
where

- = -




593

i

I y
. i

Figure 1 Blocking of band and border

The next step is then to compute

- -1 = U =T - - ~t - - . _
I-_Naé = (Tii7'Nja) (Tii~? Nia)}an = Ua = (Tii™* Nia) (Ti;~t T3)

or

- I I

BNaa - Njg Nij Nia]an = Uy = Nijg Nii " uy , cee (9)

which is the same. The small remaining system of normal equations is
solved conventionally to yield the corrections to the added parameters, dxg.

ESTIMATES OF STANDARD ERRORS

When computing the inverse of a nonlinear system of equations such as this,
it is essential to “iterate the solution until the final corrections
become zero, otherwise the derived quantities will be biased

Let

V+AX =W
be the linearized total set of error equations, where

... (10)

v is the vector of residuals,

A the error equation matrix,

x the last correction (dxp, dxi, dxa) to the solution and
4

is the vector of discrepancies.

Then

x=@ Pa-ta pw ee. (1)
and

v=(I-a@"pPa- ap)w

li

(I ? - Aop)(',g,..- e (12)
and the reference variance is

Y
2 _V ]? Y . r=n-u ... (13)

)
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where

n is the number of linearly independent observation)
u is the number of unknowns and

r is the redundancy.

The standard error of the unknowns are

gxzi = aOZQXXIii oo (14)
where
Qe = A" P A)? ... (15)

and the corresponding estimates for the residuals are

Sv3 = %0l 43 ... (16)
where : '
Quw =P~ - A@"PA)"1 A =Pl - a0, A" .. (17)

Let us study (17) to see how it is computed. The weight matrix P is a
diagonal matrix. From the inverse of P a product of three matrices is
subtracted. It is the full inverse of the normal equations, Qxx, pre—

and postmultiplied by the error equations A suitably transposed (c.f. (5)).
Let us now study the calculation of Q.

INVERSION COF THE SYSTEM OF NCRMAL EQUATICNS |

Initially some rules must be shown. For an arbitrary partitioning of the
unknowns in two groups, the following is valid for the inverse of the
normal equations

(All Az Bi1 Bi2 _ I 0 cee (18)
LAE,.Z Ajo Biz Bso O I
where

A.. are parts of the normeal equations,
B.. are parts of the inverse and
I is a unit matrix of suitable order.

Two of the four possible relations are used
A1y Biz + A1z Bz =0

v
A1z Bia + Ay Byp =1

From the first
Bir = - A11~! A1p Bio
which is subétituted for in the second relation
7
B2z = (Rgo = Ajp A=t Agp)~? e (19)
The matrix to be inverted can be compared to the expression for Ny; in (7)

and to the reduced normal equations in (9). It turns out that the inverse
of the reduced normal equations equals the corresponding part of the inverse
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of the entire matrix i.e. submatrices of the inverse can be computed
through inversion of the relevant reduced normal equations. This can be
shown strictly by applying (19) recursively, first to the partitioning in
(7) and then to the same for (9).

The first inverse to compute is thus

- -' [ — —
Qaa = (Naa = Nja Nj;i71 Nig)™? ... (20)

which matrix is obtained during the process of stepwise reduction. Qaa is
used to compute standard errors for and correlations between the additional
parameters according to (14). .

Let us then look at a larger part of the normal equations and include the
band and border part of the reduced system (7). The following will then
hold for the inverse

Nii Nial |Qii~ Qia I o
bl = = ee. (21
Nia Naaf [Qfa Qaa 0 I

where ‘

Q.. are submatrices of the inverse,

from which
Qiag = — In\?]‘.im1 l-Gf:’.a Qaa
Qi = Nyg™1 (T - Ny, o)) ce. (22)

- . = -1 = 3
= Nji71 + Njg Qa5 Nju Nj;™°

The matrix Qaa is already available. The heavy task is to invert Nij.
It is the matrix corresponding to the photo unknowns and it is large and
banded, which means that the inverse, Qii, is full.

The most interesting part of the inverse is however, Qpp, the cofactor
matrix for point co-ordinate unknowns. To compute Qpp the formula (22)
is used with another partitioning. We have

B . Qii  Qia
(Qpi Qpa) - NPP (Npi Npa} Q],_a Qaa

. 7
- Opi
Npp ' (T = |Npi Ny Qla )

where the matrices within brackets are obtained by joining the indicated
matrices. The expression for Qpp Will be

QPP

1 N..~t ee. (23)

Qii  Qial | Npi
a PP

= -1 -1 B
QPP NPP * NPP (NP 1 NP

The three matrices Npp, Npi and Npa are produced when reducing the point
co-ordinate unknowns from the adjustment. They were processed sequentially,

Qia Qaa Npa




point by point, and were saved in a sequential file. The structure of N pi
and Npa is important. They are sparse and the non-zero elements correspond
only to those photos where the point is measured and to the additional
parameters. Thus to compute Qpp for a point only the parts of Qii that
are within the border are needed along with Qia and Qza, i.e. the band
and border part of the inverse of the normal equations.

This is shown in Figure 2, where the relevant submatrices for cne point is
shown. When forming the matrix product of (23) only the shaded areas of
the matrices are needed. Since the Npi's once was used to reduce Njj,
making it banded, only the parts of Q;; which correspond to the band of
N;; are utilized.

. NPP Npi »*’ Npa
il /) . /
Qi | Qa

N 1
N RE

] |

| S St |

W

B 3

Figure 2 Computation of Qpp

BAND AND BORDER OF THE INVERSE

The next step is to compute the inverses Qii‘and Qia. For a start the
matrix Q,, is already known, see formula (20). Then the following is valid

Nua o Qr,m Qna| _ [T O oo (24)
Nna Nag Qna “aa 0 I

given that N, is the lowest partition of the band cf Qj; (corresponding
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to photo n, say) and that all N-matrices are reduced with regard to all
unknowns processed earlier (i.e. all point co-ordinate unknowns and the
unknowns for photo 1, ..., n=1). This has been shown earlier‘and this is
also the normal case when the forward decomposition of the normal equations
has been performed. N,, is the corresponding lowest part of the band.
Selecting two equations from (24) and rearranging yields

Ona = = Nnn™! Npa Qaa .e. (25)
On = Npp™ (T - Np, Qr'la)

In this step, only known matrices and inverses are utilized. The next step
involves the augmenting of more submatrices to (24).

Iet m=n - 1. Then

N!;nn Non N Qr?m 9m  Ona T 0 0

Nmn Nnn  Nna Omn :“an Onal= |O 1 0 ... (26)
r

Nr?xa Nna Naa Qx::a ; Q:la Qaa 10 0 1

The lower right hand parts of the inverse is already known. If we expand
the matrix products from the first row of the normal equations in (26)
with the three matrix colums of the inverse we get

Oma = = Nmm™! (Nmn Ona + Npa Qaa)

Omn = = Nym™! Npn Qnn + Nna Qr'la) eee (27)
Omm = Ny~ * (T = Ny szm = Npg Qr:]a)

Nom N Npa

i

| ///
///I i

Figure 3 Computation of band and border of the inverse

This will bring us a small step up along the band. It is, however, possible to
apply (27) recursively, which can be seen in Figure 3. There the horisontal
partitioning of band and border show how the blocking of the matrices on a
random access file is arranged. The upper block is to be inverted using (27).
The shaded areas are parts of the inverse which are necessary for that
computation (c.f. Wong 1973). In addition to those, also the matrix Q.5 is
needed. By successively computing the inverse parts Qu, Qun and Ona, where
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m, n are decremented, the parts of the inverse corresponding to the entire
band and border are computed. The same data storage as for the normal equa-
tions are used, c.f. Figure 1. ’

In this process, three buffers of equation storage is needed, one for the
part to be inverted (Npp, Npn, Nma), one for the corresponding parts of
the inverse and finally one for the different parts of (Q,,, Qns), which
have to be accessed for the inversion.

Iet us for one moment return to formula (23). There it was shown that the
parts of the inverse that correspond to the point co-ordinate unknowns,
Qppr can be computed with only partial knowledge of the inverse Q;;. Now
ig has been shown that the necessary parts of Qi;i can be computed in an
efficient way. :

It deserves to be mentioned that this computation can be made within the
same storage structure used for the solution of the normal equations with
the exception that three buffers are needed instead of two.

COMPUTATION OF Qy,

" Let us recall the formula (17) and expand it slightly

1

Qv = P71 = AQux A
For a ficticious observation of a control point we have (c.£. (5))
- ¥
Qvvlp = Pp™* = App Qpp App .. (28)

for a ficticious observation of the additicnal parameters
1 4
QVV]a = Pa~! = Aaa Qaa Aaa ee. (29)

and finally, for the photo measurements of a point

{
%Gp i Dpal | Bip
- [ 4
Quv|; = Pi7t - (Aip Aii Aia} Opi  Qii  Qial| | Aii ... (30)
1 ? 1
Qpa Qia Qaa Aig

The formula (30) is now of great interest. Since the processing of mea-
surements is performed point by point, the necessary parts of (Qpp- Qpir
Qpa) can be obtained easily. The computation of Q. is shown already in
(53) . The matrices Qpi and Qpa can be computed using’

Qpa - I'DD (Npi Qi a Npa Qaa) (31 )
N t : es o
ij = - Npp 1 (Np i Q i i IT‘pa Qia)

which can easily be derived using the same technique demonstrated
earlier, e.g. in (26) and (27). It is important to note that the parts
of Q;; already computed are sufficient also for this ccmputation.

PCINT-BY-POINT PROCESSING

Finally, the inversion process using pointwise processing is summarized.
The observations are all treated point by point, and the point co-ordinate
unknowns are immediately eliminated from the normal equations. At the
same time, matrices (Npp, Npj, Npa) are stored in a temporary sequential
file. The banded bordered normal equations are solved conventionally,




and the solution is iterated until convergency. In the final iteration,
the band and border part of the inverse is computed simultaneously with
the computation of the solution to the photo unknowns. The inversion is
camputed using (20), (25) and (27).

With these data, the standard errors for the solution of the additional
parameters and photo orientation unknowns can be presented.

The subsequent processing is performed pointwise. All observations to one
ground point are loaded, and the error equation coefficients Aipr Aii,
Aja) are computed. From a temporary sequential file the matrices (N D7
Npis Npa) are read, and from these the solution of the point co-ordinate
unknowns are obtained conventionally. The standard errors of the solution
can now be computed using (23) and (14). For that computation, only parts
of the band (Qj;) and border (Qia) matrices need to be loaded. The matrix
Qaa finally, is permanently stored in primary storage.

With the error equation matrices, residuals for all observations to the
current point are obtained.

By finally applying formulae (30) and (16), the corresponding part of
Quv is computed, where the matrices Q. ; and Qpa are computed using (31).
Again, all necessary submatrices of the inverse is present, and sub-
sequently the number of accesses to disk storage is minimized.

When all data has been presented for one point, the process continues
with the next. All matrices belonging to the point (Ajp, Aii, Aia, App,
Wy Wi, Npp, Npir Npas Qppr Qpir Qpar Qvv, Pi) can now be disposed of,
since they are no longer necessary. That fact is essential for the
efficiency of the program - the processing is adjusted to the data struc-
ture, the information is accessed easily and utilized fully when present.

REMARKS

The Gentri system for adjustment is designed to treat photogrammetric
triangulation data as efficiently as possible. The sequence of points is
ordered to fit as good as possible to the order of photos. This will
minimize the number of accesses to photo data.

In most systems for aerial triangulation however, the program is often
designed to process all measurements of one photo simultaneously. Never-
theless, these systems are at least during some phases of processing
treating the data point by point. It can then be interesting to study
the feasibility of implementing the inversion methods described in this
paper also in these programs. The data obtained is not only useful for
the computation of standard errors in the point co-ordinates, but can.
also be used for data snooping of all cbservations, using the method by
Baarda {1968) modified by Pope (1976).

In this paper, some simplifications have been done which are of no
importance for the theoretical derivation. One such is that when the points
are reduced, the matrices saved are not (Npp, Npi, Npa), but those obtained
after the forward elimination of Np,. These details are of practical im-
portance but will not alter the principles of the data reduction presented.
The same is true for the constant colum and the solution of the equation
systems, but they are obtained in conventional ways and need not be
presented here.
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