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e have passed since the advent of numerical aerctriangulation
the early 1960s. In this period, aerotriangulation has developed into a
l-grown geodetic point determination system. Three stages can be distin-
guished in this development. First, mathematical models were formulated
for processing photogrammetric data according to the least squares prin-
ciple. As soon as more rigourous least squares adjustment methods were
avallable, a first evaluation of the guality of the adjustment output was
de by means of variance-covariance matrices computed for coordinates ob-
ined in block simulations. These simulations led to the formulation of
S

3

directives for the planning of blocks, i.e., for the geometry of blocks,
ground control and the use of auxiliary data. The third stage of the develop-
ment of aerotriangulation began when empirical data became available showing
discrepancies with theoretically expected block accuracies. In the search
for explanations of these discrepancies, methods were developed for detec-
ting systematic deformations and gross data errors. The testing methods for
gross errors led to the analyses of the reliability of blocks, which was a
new aspect of accuracy in addition to precision as expressed in the V.C.
matrix of the coordinates. To date, reliability studies led mainly to new
directives for optimal inner block structures in terms of overlap and tie
point geometry. These studies may also lead to new directives for the geo-
metry ©f the ground control and the use of auxilary data.

Now that more advanced techniques for eva of guality of photogram-
metric coordinates are available, the nee elt to set criteria for pre-
cision and reliability in the planning st ese criteria should repre-
sent the requirements for block quality 4 ed by the purpose for which
block triangulation is performed. A sketc be given in this paper of
the theoretical problems met in the formu of these criteria and the
problems of translating these criteria (w e often rather abstract)
into practical terms.

2. Criteria for precision.

In modern geodesy, much attenticn is paid to the problem of network design
and optimization. This optimalization is done mainly with respect to pre-
cision, using sc called criterion matrices. The strategy is as follows: a
criterion matrix H is constructed for a point field. Then a geodetic network
i1s designed so that the V.C. matrix G of the newly determined points approxi-
mates H as well as possible in the sense that the maximum and minimum eigen-
values Amax, ‘min solved from |G - Mi| = 0 give a minimum for the functions:
Dimax - 1] ) ‘min) (1)
because G and H are positive (se we have Amin > 0 (» 0J.
The research published to date concentrates mainly on planimetric networks.
The matr D £ deal twork; it i1s homogenous
and isot o} 1 1 circles of the same
size and d: depends only on the dis-
tance be t ct f fers. A special case of s e
matrix with a "chaotic" structure; there the relative standard ell




also circles. This structure is most frequently used. The elements of the
matrix are:

— o~ _ 22 _ _ 42 _ 32 : . o _

Oxixy = Oyiyy = 47, lexj = Gyiyj =d diy for i # 3, Oxyy; = Uxiyj = 0,
. . N - ;

= constant, d%' = £ (distance i, 3J, 3% and dij should be chosen so that

a i
H is positive definite [ 4, 16, 17].

The matrix G is a function of the datum choice for the coordinates; it is
also a function of the network structure and of the V.C. matrix of the ori-
ginal observations. There are therefore three options for optimizing a net-
work with respect to precision: The first option for chcosing an optimal
datum is called "zero order design". It is possible to chocse a datum so
that the G matrix of the coordinates has a minimum trace EQ, 7, 9, 14, 20}
This strategy is often advocated for a free network adjustment, i.e., the
adjustment of a network without higher order points. The G matrix can be-
come rather homogenous in that case. A serious problem is that it beccmes
singular with a rank deficiency of four.

The second option for optimizing the structure of the network is called
"first order design". The search for optimal network. structures did not
lead to results Amax = Amin = 1. The structures which lead to small values
for the target functions (1) are not very practical; they can hardly be
realized in real fieldwork. It is interesting, though, that aerotriangu-
%ation ?locks seem to score rather well if they are regularly structured
112, 15].

y

optimal V.C. matrix for the original ob-

-
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The third opticn for searching a
r

servations is called "second order design". Let P be the weight matrix, the
inverse of the V.C. matrix of the observations. In most cases P is a dia-
gonal matrix. The propagation laws for V.C. matrices give the relationship
between P and G, say: G = £(P). In the second order design, one tries to
invert these relationships: P = £ (G). Because G has a lower rank than P,
¥ es-

the mapping f is singular, so that £~ can be found only under certain r
trictions. If a solution for f~ is found, then the optimal weight matrix
Po is found by substituting H for Po = f7(H). The problem has not been
solved to date. The weight matr hich seemed to give good scores for
(1) have the disadvantage that led to irreqular observation patterns
in which different numbers of itions were required for the measure
ment of different sides of a network. Nc field surveyor will be hapoy
with that.
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2.2. Network satisfication.

In section 2.1., it became c
tries to formulate a strategs

=

quite a few problems arise when one

w
zing gecodetic networks with respect
t

imi S

to the precision of the coordinates. That is why one should try to find an=-
other strategy for network design. A first observation to be made in that
respect 1s that a network can be completely described by means of form-
elements that are angles and length ratics. They define the gecometry of a
network and therefore n So the analysis of the quality of a

1ity of the form elements constituting it.
It is only a matt: of convenience that coordinates are introduced to des-
cribe the relative position of points, thus introducing the necessity of
a datum definition. That is why the choice of a datum (coordinate defini-
tion) should have no effect on the judgement of the quality of the network;
it should play no role in the strategy for netwoxrk design.
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This datum problem can be avoided if one always refers to an explici
datum, which is called an S-base [4]. For levelling networks,
o} o] £ the ight is fixed as not stochastic. In
networ t of two points are fixed as not stoch
d te systems, the S-base consists of &©
] c ordinates; in addition, the direction mus
the_ a ctor o he plane containing these two points d

one | 17]. The coordinates computed with respect to an S-base can be con-
sidered as a direct function of the form elements of a network.

In section 2.1., we saw that network optimization by first order design,
i.e., finding an optimal network structure, does not lead to acceptable
results. This strategy does not leave enough freedom to the land surveyor
to adapt his network to the topography of the terrain. This fact makes it
doubtful whether we should really aim at an optimal network str i
the sense that target functions (1) are minimized.

Let us try to understand the meaning of these target functions somewhat

better. If ¥ is an arbitrary function of the coordinates of the network,

then the combination of Jmax - 1| = 0 and ’max - Amin = 0 means that

GFF = HFF, in which GFF is the variance of F computed from G and HFF is

computed from H. In that case, the actual precision of any function of

the coordinates is nearly equal to the criterion given for precision by

the criterion matrix H. In practical situations, requirements for precision
e dl form h n 1 n !

The problem now is that F is a function of the coordinates and GFF iz a
function of G the V.C. matrix of the ccordinates. The matrix G depends on
the network t of S rk. The use
of another we stated
that the ev s its form
elements it < 1 erefore be
true for any i d respect any S is a first
requirement when we develop a criterion theory for precision.

A second requir efer to
a special netwo struc-
ture a network accor pre-
cision are fulfilled. In case of a general purpose netw n
preferences for certain parts of have
the same meani perbounds
for the precision of the form elements, angles and hould
depend only on the shape and size of the triangle are com-
ruted. The upperbounds should not depend on the lo tation

of the triangle in the network. These requirements ed if

the critericn V.C. matrix H for e rdinates ha g nd iso-
tropic structure, like matyix H ion 2.1. In most cas ses

in planimetry a matrix as specif (2) [(see also Eéj}.

can not be applied in its origi m because 1t will contain non-zero
elements refering to the coordinates of the 3 e, which should be not-
stochastic. This problem can be solved by these elements zero by
matrix reduction; this is a special application of S-transformations as
given in [4, 16, 1771 . After this t ation, the matrix H is no longer
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homogenecus (in R; it will also lose its isotropy), but because of its
meaning for the form elements we say that it represents a "homogeneous and
isotropic inner precision®. The variance of form elements is invariant after
an S-transformation, the transition from one S-base to another. After the
S-transformation (reduction), H refers to the same S-base as G. From this |
transformed H matrix we compute HFF with which GFF is compared. |

The inequality GFF < HFF will be true for any function F of the cocrdinates
if the general eigenvalue problem |G - AHi = 0 gives Amax < 1. (3)
Instead of "optimization" which aimed at (1), we call the strategy aiming

at (3) "satisfication". We are no longer searching for a network with an
optimal ("ideal") precision, but we are searching for a netwerk with a pre-
cision which is satisfactory.

If the structure of H before the S-transformation is given by (2) then it

is fully specified by the constant d%? and the function d%j (see [4, 16, 17]),
The effect of d° is eliminated by the S-transformation so that the actual
upperbound is completely defined by d%j' This function can be considered as
the variance of the distance between points which have (2) as a V.C. matri:
for the coordinates. Because that matrix does not refer to an S-base, it
should be considered as the V.C. matrix of a ficticious coordinate system,
(a) -system.

The functicn dij should be chosen so that the S-transformed matrix H is
0051tlve definite. Experience in the Netherlands shows that the function
d11 = Co + C; lijj is a reasonable choice for the criterion matrix. li4 is
bhe distance between points 1 and j, Co and (| are parameters. A network
classification with respect to precisicn can be made by giving praticular
values to these parameters for each class. Their choice is still a topic
of research.

2;%;_§n_129££91339§_95 the crlbericn theory for precision in photogrammetry.
A Tmatrices can be used in Ewo ways: They can be used to
formulate criteria for ;recision and to classify pointfields with respect
to precision as discussed in the previous sections. They can also be used
as a substitute 1f the V.C. matrix of the coordinates i1s not available,

as is often the case in photogrammetry. This second posibility will be ela-
borated in this secticn.

For substitute matrices, the cholce of the function diy 1s more critical
than for the criterion matrices. In ad linear function men-
tioned before, there are other possibilities such as the logarithmic function

2 CLig s e = .
diy = Co + CC, 1n (1 + CilJ and the exponential function
2
2 2 2 . -2
dis =Co +¢C, (1 -exp (1 -C5 1li4)). The function diy should always give
- : 3 - ] - = - -
a positive definite matrix H.

All functicns have in common their dependence on the distance between the
peints 1 and j to which dfj refers. Furthermore, they depend on the *vo or

three parameters Co, C; (and C,). Once a function has been chosen for ajﬂ,
values should be given to the parameters to specify a level of precision’
The choice of dij should be based on experiments similar to those performed
by Baarda for terrestrial networks ’?4j ch.18).

Some experiments have already been done by Karadaidis fl”} for simulated
planimetric independent model blocks. He varied the si ze of the blocks, the
tie point configuration, the control point configuration and the assumptions




v

p’
matrices H. Each family was defined by one of
1 =

stochastic model for photogrammetric cbservations and ground control
. For each block, he computed the V.C. matrix G of the coordinates
rain system, which he then compared with three different families
~ £ o+

mparison was made by means of the general eigenvalue problem
b 0. For each family, the parameters Co, ¢, (and C,) were cho'sen
hat Amax = ! and ‘max/’min is as close to 1 as possible.

The parameter Co 1s the constant part in each function; it should be chosen
in relation to the precision of the measurement of the model coordinates.
The other parameters belong to the distance-dependent part of dij, whose
characteristics depend on the actual block structure.

o)
i
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experiments show that Co should be chosen first; then C, can be

used to scale the matrix H with respect to G. The parameter C, in the lo-
i and exponential functions determines the curvature of these func-
ter fixing Co, the parameter C, is chosen to make lmax =

chosen so that imax/Amin gets a value as cl
D ts gave the best results for the logarithmi
tions. The difference between the re
t fference between these re
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More experiment to study the effect of larger block
sizes, differen V.C. matrix of ground control and
auxilary data. lso be done for heights and for three-
dimensional po e bundle blocks. All these exercises
should lead to pre he d?i function and its parameters for
different types of b e s of these experiments can then be
used to describe the precision of photogrammetric bleck coordinates by
means of artificial matrices. These are easy to generate, so that the com-
putational effort to obtain the real matrix G for each block can be avoided
in practice. The function d%E with its parameters can at the same time serve
as a classification of the precision of photogrammetric point fields. The
matrix H generated with a specified di; can then be used as a criterion for
the precision of the densification masUrements; this critericn should be

One should be aware of the fact that the target function Amax - 1 a
imax/Amin - 1 are used in a way different from what was done in sec
2.1. re used to find the matrix H which fits best the re

G for a given bleck. Our aim is not to coptimize the observation pat
we want to find the best suitable substitute matrix. The second fun
be minimized only as far as the structure of the H matrix allows. I
experiments, Karadaidis hardly ever found results better than Amax/’m
values larger than 10 have been found frequently.




The theoretical tools exist to find a best substitute H for G. The practical
problem is indicating how accurate information about the precision of block
coordinates should be; that is, how small should we make the range defined
by Amax HFF and Amin.HFF.

(=]

f the strategy for
cial matrices is acc
sheould be trained to use the function aij with its parameters to spec‘*y

the precision of their products. This will be easier for them 1f the rela-
tionship between the parameters and the actual block structure is better
understood than it is now. This understanding can be cbtained only by means
of experiments, as mentioned before. It would be good to use some of our
research capacity to solve this problem in the near future. At the same time,
photogrammetrists should try to combine their efforts with those of land
surveyors in this respect so that a consistent set of criteria and classi-
fication parameters can be formulated for the precision of photogrammetric
blocks and terrestrial networks.

the classification of point fields by means of artifi-
epted, then people working in applied Dhotogramme+rv

3. Criteria for reliabilityv.

The previcus sections concentrated on the criterion theory for precision

i

because in the last decade it did not get much attention in photogrammetric
literature. This is quite different from 1ite?atura on geodetic network
design. Most likely this difference is due to the fact that geodesists have
more freedom in designing their networks than we have for photogrammetri
blocks. Because of this fact, it is very likely that the possibilities which
the theory gives for classification and for generating substitute matrices
will be more important for photogrammetrists than the directives which can
be derived for block design.

£ 1s striking, though, that photogrammetrists paid much more attention to
the second aspect of guality control than geodesists do. This second aspect
is the detection of errors and, related to that, reliability studies. This
area is well-known to land surveyors, but its importance is apparently
largely under-estimated by geodesists working on research on network design.
This is striking because the most succesfull techniques for error detection
have been formulated by geocdesists {3, 13]. One wonders whether this is
because people working in research on aerotriangulation have a more dir
contact with practice than many of the researchers on geodetic network
design. Whatever the reason may be, many publications are available so that
the interested phoctogrammetrist can easily become informed about the status
of this research. We will therefore be brief about this status, but we will
give more attention to the problem of the formulation of criteria for re-
liability.

ect

The most successful error detection techniques published to date are the
"data snooping" technigue [3] and the "Danish method” [13]. The data
snocping technique is a strai

-

aight-forward application of the statistical
i + is based on a well formulated null hypo-
native hypothesis Ha which is tested against Ho.

Ho 1s, in general, the assumption that the
Y ributed with a know V.C. matrix, while the
i rtain conditions which represent the mathe-
sured network or block. The data sncoping technique
S t tests (most powerful tests), one for each

OD

theory of hyp
thesis Ho and
In geodesy and pho
observations are normal
expectations should ful
matical model of the mea
consists then of a serie

(’D |
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membe of alternative hypothesis Ha, e.g. the assumption that
obser s occur. Methods based on robust statistics, such as th
Danis less restrictive in the formulaticn of Ho and Ha EB, 11,
13}. or inconsistencies among the observations which may in-
dicat ror sources, e.g., observational errors or systematical
defor s the data snooping technique is strongly related to
least mation, robust methods allow cther estimation procedures
also. Bot however, are based on the formulation of a mathematical
model from which condition equations can be derived for the observations.
These condition equations give the essential information required for error-
detection, or more generally for hypothesis testing. It is pessible to prove
that for a properly formulated Ho and Ha, the data snooping technigue always
glves a most powerful test, although it is often difficult to decide which
Ha occurs in case of a rejection of Ho. The robust methods lead in many
cases to a guick data screening, but their sensitivity for errors cannct

be better than that of data snooping. The separability of errcr sources,
alternative hypothesis Ha, depends mainly on the structure of the condition
equations rather than on the testing technique. Hypothesis testing therefore

n
first consists of the optimal structurin g of the condition
o] 1 separability of theose hypotheses in
kN

ot

g

0]
t

t

has two aspects
atlon: so that they give an optima
L r d t

is interested. This 1s a matter of block or network design. The
second aspect 1s the choice of an optimal testing procedure, which gives
most powerful (most sensitive) tests. In practice, one often adds the res-
triction that the testing procedure should not lead to toc large a compu-
tational effort.

ility studies,

e of the data snooping technigue over the robust methods i1s that
it gives a tool for evaluating the guality of a block or network in terms
of reliability 23, 5]. In the design stage, one can evaluate what magnitude
of errors can be found, the probability of their detection and what distortion
they will cause in the final cocrdinates if they are not found. It would be
quit d 1 £ +! o} for only
th i c

The two ways.
Pri ecome so
sensi bserva-
tiona c Y "internal
relia . a ne o undetected
errors or defo rmatluﬂs do not lead to seriocus distortions of the final coor-
dinates. Then the system has high "external reliability". This means in

act that one makes the estimation of the coordinates rcbust i
sensitive with respect to changes in the means of the d
of the observations.
Reliability studies are usually done as follows. For each Ha, a best test is
formulated with a test value Wp which possesses under Ho a standard normal dis-
tribution: Wp = N (0, 1). Then a significance level is specified: a, =
probability of ecting t (tyvpe I error) and the power
is specified: r i if Ha, is true (1 - Bo
= probability lue C Of the test is

function of s a function of C and Ro
{and thus of shift in the test value
VIWp which can . For each Ha,, one can
compute to wh e value lo corresponds
and one can a nal coordinates (Vx, V9¥)




will be if this distortion is not detected.

In section 2.2., it was stated that the coordinates should be defined in

an S-system. The effect (Vx, Vy) for individual points will change in the
transition from one S-system to another. The evaluation of these quantities
is therefore useful only in special purpose networks where a particular S-
base must be chosen. For general purpose networks, one should make use of

a parameter ) which is computed from the quadratic form with the inverse’
of the V.C. matrix of the coordinates as the central matrix, which is then
post-multiplied by the vector containing the distortions (Vx, Vy) of all
the points and it is pre-multiplied by the transposition of this vector.

X is invariant under S-transformations [2, 51

3.3. Risk minimization.

The techniqueg—:ur evaluatin reliability are useful for the design of net-
works. Once the measurements have been made, one could question, however,
whether hypothesis testing should really be performed with a fixed co.
There are other testing strategies which minimize the risks of making wrong
decisions [1, 6, 18, 19] based on a different line of thought. In section
3.2., one should first choose 0o and Bc and then compute what distortions
can be expected in the final coordinates caused by undetected errors. For
risk minimization, however, one should first set a tolerance for these dis-
tortions. In a special purpose network, one could set tolerances for indi-
vidual coordinates, say Vtol x and Vtol ¥. In a general purpose network,

one could set a tolerance for }, say jtol.

Error detection should aim at finding observational errors which give dis-
torticns larger than these tolerances. The tolerances for the test values
can be found from Vtol Wp = /Atol with Atol = X (Atol) or Atol =

A (Vtol %, Atol §), see L18} If one knows by experience that, in general,
a fraction p of the cbservations is erronous, then a fraction 1-p must be

crrect. When testing is done with significance level G, the probability
Of making a type I error (rejecticn of correct observations) is p (typs I)
= (1-p).o. The financial risk of a type I errcr is then R; = (1-p).a.Ly,
in which L, is the cost factor related to such an error. For a type II
error (not finding errors), we find similarly R, = p(1-8) L,; here B8 =

power of the test, L, = cost factor of type II error. If testing is done
with a critical wvalue C, we £ind

= o]
Gc = @ (C) = [ £ (Wp|Ho) dwp and 8, = B8 (¢) = [ £ (Wp|Hop) dwp.
c - c -
The total risk function of the test is r_ = R} + Ry = (1-p) oL +P (1-Bo) Ly .

If Ha, supposes a distortion with the magnitude of the tolerance, then ro
will be minimal if we choose (see 18J)

1 r 1-p L, ) Yitol
= ——— | In (=—=) + 1n (=4 y ==
© = TitoL 1_{n ( D "L J 2

assuming Ho : Wp = N (0, 1) and Ha : Wp = N \tol, 1).

. . - 5 /- e - A N N
For distortions larger than vAtol, we find 5 8 and thus r < r.; hence r,
is an upper bound for the risk function. This pp r bound is minimized.

For each Ho,, the parameters ¢ and r, can be eva‘nated.

If ro ®= Ry Then Ry * 0. In tha 1

detected. If r, = Ry, then R, = 0. Then it is almost lmDOSalDLe to d

ich means that it

the reliability of the tests varies be-
on 3.2. where Bo was

Different 0. and B, are used for
the tolerance for the coordinates, Ny
cause B, varies. This is quite different from secti

+

(
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ried. One has to take care of this when evaluating
the whole system.

sucl

These values can be obtained only by experience, and even then will be
difficult to define them sharply. In fact one should first study how sensi-
tive the risk function r is with respect to variations of the values of
these parameters. Only then one can decide how sharply thev should be de-

fined.

There are more problems to be solved: At first, there is the fact that test :
variates for different Ha,. are often strongly correlated, so that rejec-
involves the rejection of others. The evaluation of the xisk

of total testigg procedure anolVLQQ more than one test should take this in-
to account. Secondly, error detection is often performed in dit?ere 1t stages
of a project; the risk and tolerances for the tests in each stage should b
chosen in regard to those in other stages £;9j.

If a strategy is to be formulated for the design of a block or network to
minimize the risk functions, one faces the following problem: this reduc-
tion often requires that the structure of a block or network is improved

by the addition of extra observations, which means an increase in cost.

How far should one go? How should one weigh the deterministic costs of

the measurements with respect to the probabilistic risk functions? The
answer to this guestion is far from clear yet. This i1s in fact a central
problem in the design of blocks or networks to meet criteria for guality:
how to weigh these criteria wi respect to the actual costs.

4. Conclusions.
In our discussion of the status of the theory for gecdetic network (photo-
grammetric block) design, a separation was made between precision and re-
liability. We should try to integrate these two in our further research.
In section 3.3., the theory for reliability was worked o to the extent
that economic factors could be linked to abstract parameters. This is not
yet possible for the criterion theory for precision. This linking is im-
portant because cost facters are the final terms in which a photogrammetrist
is interested when he has to discuss his products with his costumers. One
should keep in mind, however, that the validity of the applied functicnal
and stochasti models is limited; they give only an approximate descrip-
tion of the physical reality. When economic cost factors are linked with
the parameters in these models another inaccuracy 15 introduced in our
evaluation methods. One should therefore use these methods with care; they
an give only coarse directive twor k design. Because of
this fact, the question aris further refining
the theory for guality contr work design. We
soon come to the point where nd effort are no
longer in balance with their why research in
this field should be done in ; S0 that instead
of developing cur theories t histication, we in-
try to find a better transla heir essen-—
tial parameters into practic
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