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I1f a general cartesian tensor of the second rank T, - representé transforma-
tion from one region B, to another B (Fig. 1a), then this tensor decom-
poses into symmetric and antisymmetric tensors respectively. Physically,
symmetric tensor characterising strain 2 tensor executes a deformation of
model (relative orientation), whereas anti-symmetric tensor characterising
a spin tensor associates with rotation of rigid body (part of absolute
orientation),

N
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x
@
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FIG. 1 DEFORMATION OF AN ELASTIC BOOY AND POINT P .

Let dx, dy, dz are small linear changes of the same point from Po to P,
along coordinate axes, However,. ) ’ @j,ﬁ*‘are displacement vectors on yz-,
zx- and xy=- planes, due to small rotations 3‘ w, ¢, x'; hence dwy, dw, ;
d¢,, d¢,; and dx,, dK, are their compohents into coordinate axes., Then the
linear changes and the displacement components become normal and lateral
strains if they are the results based on a unit space-vector acting at P
which assumes a shape of parallelpiped of infinitesimal sides (Fig. 1b).
Location of the nine quantities of displacement with respect to the three
planes is shown in Fig., 2a. Mathematically, the first order form of a
Carterian tensor of the second rank

dx d K, dé,
dxk, dy dw, (1)
d¢, dw, dz

. depicts the displacement of P due to the six orientation elements.
: Consequently T;, can be decomposed into a symmetric D,. and anti-symmetric
R, - tensors. ?%rther discussion on rotation tensor Ri‘ will not occur in
the paper as it is related to absolute orientation. 'T%e symmetric tensor
'D:., which we will refer to as deformation tensor, with its six independent

1]
component can be expressed as:

dx die dé where 2d@ = dp, + dw,
iy = 4k dy dw 23§ = d¢, + dox (2)
ag an dz 23¥ = dx, + dx,

'

Graphically the deformation at the point P is shown in Fig. 2b; inorder to
achieve the static equilibrium on three faces of the parallelpiped not
-shown opposite to the three frontal faces, identical components are acting.

#2 For this paper, strain = lim =-> 0 (change in length/original length).
#3 For small rotations, a curved path is assumed as a straight line.
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MATICAL MODEL OF DEFORMATION AT POINT P .
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to every point of the object-space there exist a neighbourhood#3 which can

be mapped into the image-plane by means of one-to-one correspondence and
continuous in both direction.

o 0

u ot
\ U'
v v
< PHOTOGRAPH '

o .
U'
P 5
0BIECT-SPACE o 8 u(xsy) = o, v(x,y) = e,

v

(a) (b))

FIG. 3 THE GECMETRICAL MOUDELS OF PHOTOGRAPH AND STEREQ-MODEL ON PROJECTION PLANE

Consider a right handed three-dimensional coordinate system with origin 0
and the axes Ou, Ov and Ow (Fig, 3a). A xy=-plane having axes x, y and
parallel to uv-plane represents, a photograph. In the cbject-space set B
defines a surface and for any of its points Py, there is a subset S(PO)
which we referred to as neighbourhocod. There exists one-to-one correspon-
dence between the points of region C(a) of the photographic plane and
points of neighbourhood of Py by the following equations:

u = u (X, Y)
vo= v.(X, ¥) (5)
w = wi{x, y)=1%

where u(x,y), v(x,y) and w(v,y) are -functions in the region of the photo-
graphic plane. These functions will be referred to as parallax functions.
On a projection plane with a fixed projection distance £, the focal length
of a camera, the function w = wix,y) = £.

Thus, the egs. (5) enables us to obtain model coordinates interms of image
coordinates x, y of a point, if functions u and v are single-valued and
continuously differentiable, and possess a nonvanishing Jacobian.

2.3 1Image Deformation Tensor

At a point P (Fig. 3b) on the projection plane the coordinates curves

u(lx,y) = cy and v(x,y) = €y where cy and c, are constants, intersects,

orthogcnally to each other and they are tangential respectively to the unit .
vectors e and e, in u- and v- directions. With a concept of gradient of

function whose direction is normal to the curve defined by the function,

the space Cartesian coordinates of the point P are Vv in u-=direction, vu

in =-v direction and f in w-direction respectively. 1In the right handed

coordinate systems Quvw and O'u'v'w' represent the left and right

photographs,

#3 A neighbourhood ¢of a point is a set which contains all points suffi=-
ciently near to it, A set is a collection of identifiable objects,
its elements, A set can be referred to as a space and elements as a
point,




The coordinate axes u, u' are roughly in the flight direction and that Ow
and 0'w' axes are parallel and normal to the projection plane. The problenm
i

1
on plane is to find the linear

of relative orientation on the project

relations between the two bundles of vectors from the left and right
perspectives centres 0 and 0'. At the point P, it is achieved by a

=4 5 ~ . =
dvadic product™™, or natural product of two vectors of the form:
i.vu + j. yu + k.f {(7)

where V= e T ey and also known as the gradient, The result gives a
b,. symmetric tensor of the second rank which executes affine orthogonal

i
transformation of image points into a surface of the model, By differential
vector calculus, some components of the tensor P;. can be expressed as:

J
(a) Au = Vu . 7u and (b} AV = yYv ., ¢V 8
where A= .__ + .,, and also known as Laplace's operator, hen P 1s
expressed in components form as:
H AV Vv.vu f.yv |
P, = Vv, Vu Au £f.Vu i; (9)
- £.Vv £, 71 £.f ;l

£ = = Av - ANu. A
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Further the symmetric tensor P,. can be decomposed into two symmetric
tensors 5. With its componentd in all possible 9x derivatives of
functions u, v represents y-parallax tensor, whereas components of x-
parallax tensor comprise of all possible dy derivatives, The tensor Eq.
13 characterise the general image-deformation at a point. However, for a
plotting machine, when Av, A 1 axes are parallel to u-, v- axes
respectively, components of the tensor corresponding to components dx, dy
of Dij will be:

(a) Vax = 0, Vg = 1; (b} u = 1, Uy, = 0 (14)
Thus, y-parallax tensor
(y) 0 Vg £.v,

Py j Vaey 1 fouy (15)
fove, fou, V=

1]

and x- parallax tensor

(x) 1 Uy Eovy|
f.vy f.u3 -Uyy

are valid for our special theory of orientation and always symmetric,
independent of the coordinate system, Alsoc they are invariant under rota-
tions, because of the tensor character of its components and by virtue of
its physical meaning of being a deformation tensor.

3. Condition for relative orientation: Strain Energy Principle

Since energy developed in an elastic body due to deformation cannot be
dissipated inside the body, work done with the result of this deformation
is stored inside the body as strain energy. The energy of deformation of
the body, for our problem, is equal to half the work done by external
forces acting through the displacement due to orientation elements. The
work done, from the unstressed state of taking photograph to the state of
model deformation of orientation phase, is always positive. Consequently,
it is a sufficient condition that the strain-energy-function exists and
hence, it is unique (Gurtin, 1972).

Consider the case where on the analytical model there are no body forces
and only surface displacements u, v at a point are given, The work done is
expressed as the volume integral of the strain-energy-function (W) taken
through the volume of the body (B); thus strain energy (U) is expressed as
(Love, 1944),

U = 1/2 [W 4v (17)
B

where dv is a small change in the volume of the body.
Moreover, the strain-energy-function is the homogeneous quadratic function

of the strain components. Mathematically it can be shown that inner-
product of strain and stress tensors would provide the said requirement for

45 The sum of two tensors of same order is a tensor of that order; C.., =

1]
Aij + Bij
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(b) u, = 94; v, = 9, on the boundary 9B,
where *w is a derivative into direction normal to boundary curve, and g,,
9, are certain assigned values for displacement at the boundary. This type
of boundary value problem is usually known as boundary value problem of the
second kind.

The partial differential equation of the second degree (eq. 20a) in

canonical form will be hyperbolic paraboloid of the form x2/a2 - yz/b =z .
(Fig. 4a). Assuming a = b, then a family of level curves on this surface
would be a family of hyperbolas xy = +c or x? - y“ = +c depending upon the

orientation of coordinate axes, These two types of curve will be used to
set up boundary conditions.

L2 (y)
(e) ( (b)) (c) y
Y N L,
- (v} ‘ \\ //
(x) < x
X y N
// \\
Xy = + ¢ ///—-..\\\\

y "2/3'2 - Yz/bz =z
(x) 1/2 (x3 = y3) =z c

FIG. 4 HYPERBOLIC-PARABOLOID SURFACE OF THE MODEL AND TWO DIFFERENT BOUNDARY CURVES

4.1 (a) First Boundary Value
The unknown parallax functions u, v are solved from the first boundary
value (Fig. 4b) giving the boundary conditions: '

u, = +xy and Ve= = Xy _ (23)

With known values of all derivatives of u, v and eq (20) could be expressed
in Cartesian coordinates of the photographs as

(a) U(y) = 1/2dy + 1/2 ydz - x dB - £ xy A3+ 1/2 £y% 4T

(24)

(b) U(x) = 1/2 dx = 1/2 x dz + y dR = 1/2 £ x> d§ + £ xy 4@
The egs. (24) are the well known differential equations which we will refer
to as Classical Differential Parallax (CDP) equations.

4.1(b) Second Boundary value
The unknown parallax functions u, v are solved from the second boundary
value (Fig. 4c) giving the boundary conditicns

2. 1/2 y2 and v, = + 1/2 %2 - 1/2 y2» (25)

u_ = = 1/2 x 9

x

With known values of all derivatives of u, v the eg. (20) could be
expressed in Cartesian coordinates of the photograph as

I

1/2 dy - 1/2 y dz + xdB + fxy d§— 1/2 £ (x? - ¥v?) aa@

(a) Uly)
1/2 dx = 1/2 x dz + yak + 1/2 £(x% - y°) dd + fxy d@

(b) U(x)

(26)

These are the new parallax equations which we will refer to as Partial
Differential Parallax (PDP) equations. The y° - term of a¢ in x- parallax
and x“~term of && in y-parallax are neglected in the usual derivation of
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unknown functions. It is indeed a powerful method, suitable for this
computer age, that provides mathematical as well as physical approximation
to a problem, Although an unconventioconal approach to our orientation
problem, it is a well-established discretisation method of the continuum
problem,

5, Conclusion

The six guantities of image deformation at a point with movement of
orientation elements and the resulting parallax in the model are the .
symmetric tensors of the second rank. The unigue equaiton for the x- or y-
parallax is a two-dimensional conformal equaticn. By and large relative
orientation problem should be viewed as conformal mapping between xy- plane
and uv- plane, The inner product of two tensors, mathematics of strain-
energy principle provides the intrinsic condition for the analytical
relative orientaticn at a point on the model without appealing to the
embracing space such as the perspective centres. In metric space in
Euclidean geometry, this condition is developed, not line (collination) or
plane (coplanarity) as its fundamental element, but "point" which, of
course, outweighs the others in importance.

The intrinsic condition of orientation may overcome some limitations
imposed by the classical method in digital imaging technology utilizing
electro optical recorder rather than film, On the other hand, the proposed
finite element method can provide a variation in the degree of polynomials
and changes in sizes and shape of elements in agreement with the type of
terrain. Thus a photogrammetrist can monitor the accuracy requirements, at
an early stage of data processing such as the relative orientation,
Because of that, he does not need to rely con the final accuracy based on
the result of the gross error detection followed by adjustment, or vice
versa, :
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