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Tapani Sarjakoski ‘

Technical Research Centre of Finland
Finland

Commission III

Two methods are introduced for selecting additional parameters,
- one related with the principle component analysis and the other
based on the stepwise regression analysis. The repetition of
the adjustment is avoided by using the reduced normal equations
of additional parameters in the analysis. With the methods the
danger of overparametrization and possible numerical insta-
bility is circumvented also in cases of wide sets of candidates
for additional parameters. Special measures for controlling
the geometrical quality of the model extension are developed
based on the use of me and ny matrices.

1 INTRODUCTION

1.1 In recent years a great number of studies have been con-
cerned with the problem of finding a proper extension of the
functional model of the bundle block adjustment for compensa-
tion of systematic image errors. The special task of selecting
additional parameters from a set of candidates has aroused a
wide discussion of statistical testing methods as well as of
the methods for controlling the stability of the model. Before
introducing new methods certain paradoxes noticed by the author
are discussed.

1.2 Paradox of instability of the model: It has been a fairly.
general conclusion that a safety compensation of systematic
image errors can only be achieved in strong photogrammetric
blocks with e.g. 60 % sidelap or with dense ground control.

In weaker blocks the danger of instability due to overpara-
metrization is obvious, if additional parameters are not
treated properly.

On the other hand, from the practical point of view the weak
blocks with 20 ¢ sidelap and sparse ground control are impor-
tant, especially in small-scale topographic mapping. In these
cases the uncompensated systematic errors can deteriorate the
results considerably. As a conclusion it can be said that we
have to go very near the border of instability - but we must
not cross it - to give the full benefit of the use of addi-
tional parameters for the practical field. For that reason we
need very sophisticated methods for selecting additional para-
meters.

1.3 Paradox of orthogonality: The use of additional para-
meters that are mutually orthogonal and with respect to other
parameters, is considered as means for improving the stabili-
ty (Ebner 1976, Griin 1978, Heikkild & Inkild 1978). At the
other extreme, when the additional parameters are exactly
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orthogonal with respect to the coordinates of ground points,
they have no compensation power, being thus useless. On the
other hand, a full correlation would result in a singular
system of normal equations. Thus, we have to find a balance
between these two extremes.

1.4 On the concept of stability: In the text above the con-
cept of stability is not yet well-defined. We have to distin-
guish between 1) the concept of the stability of the adjust-
ment model and 2) the numerical stability.

In photogrammetry the stability of the adjustment model is in
close connection with the concepts of quality and reliability
(Baarda 1973, Fdrstner 1981). In fact, it is of primary inter-
est. Thus, we must have means to measure the s*ablllty of the
adjustment model. The degradation of stability must be kept
within certain limits when the model is extended by additional
parameters.

The numerical stability is of secondary interest only from the
point of view of photogrammetry. It concerns the numerical
methods used for solving the adjustment model. It is crucial
to use numerical methods that guarantee the reliability of the
numerical results but the numerical methods used should not
have effect on the applied adjustment model.

2 ON THE GEOMETRICAL QUALITY

2.1 The stabi

lity of the adjustm model depends on the ge-
ometry of the proble n
1it
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the adjustment model.
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The accuracy and homogeneity of accuracy of coordinates of
ground points are related with the geometry of the block. So
are the internal and external reliability of the block.

Each of them has its own rationale, and a measure indicating
the geometrical gquality can be based on any of them. Addition-
ally, the measure can be absolute or relative. The absolute
measure is valid for justifying whether or not a given block
ulfils some preset reguirements. Absolute measures have
actually been used in the numerous theoretical studies concern-
ing the accuracy and rel;ability of ;h togrammetric blo kc,
The relative meas n be based on the rat of
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corresnondlng absolute measures of two cases, i.e. the geomet-
rical quality with respect to some reference case.

2.2 When expanding the basic model of block adjustment by
additional parameters the relative measure of geometrical qual-
ity is of special importance. With them we decide whether or
not the model extensions degrade the geometrical guality dan-
gerously. The check of determinability of additional para-
meters proposed by Fdrstner (1980) is based directly on the

concepts of reliability,
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The choice of relative measure depends on which of the four
mentioned items we want to stress. The decision thus includes
some experience-based heuristic reasoning. Two such measures
are introduced below. ‘

(7) (o)

q q
Z, = na =], 2, = naz . (la), (1b)°
- xx ve Ty
Zy relative measure of accuracy,
ZV relative measure of internal reliability,
X set of coocrdinates of ground points,
4 set of residuals of photogrammetric image observations
(o) indicates the basic model (see next chapter for details
of adjustment model),
(<) indicates some extended model indexed 7,
Dpws qpo diagonal element of weight coefficient matrix.

For testing whether the geometrical gquality has degraded with
the extension of the model we set the null hypothesis

HO: geometrical quality is not degraded, which will be rejected
if : - :

(2a) , (2b)

where Cy and a, are heuristically defined constants
1 < ZX < a, with I < a < 2 assumingly.
4

It is obvious that the block includes some points having very
pocr qxg) and qég) values, e.g. the points with observations

from two photographs only. These points can be considered as
"hopeless" ones for which some coordinates are, however,
needed. Evidently these 9 and . values would be very sen-

sitive to model extensions. For avoiding problems arising we
can cluster them from sets X and V before applying the test.
The clustering would presumably involve 1 % - 10 % fraction
of sets X and V.

3 THE MATHEMATICAL MODEL

3.1 Assume we have the extended model of bundle adjustment in
linear form:

Ax + Bs = l-v, P , (3)

77
[
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x vector of unknown parameters of the basic model including
the coordinates of ground points and orientation elements
. N ~ 27
of images, size |u_,I1],

A respective design matrix, size {n,ux},

s vector of unknown parameters of the model extension (addi-
tional parameters) size [us,zj, :

B respective design matrix, size [n,usj,

I vector of observations, size [n,1],
v vector of residuals, size [n,I],
P

11 weight matrix of observations, size [n,n].
1

The model extension is taken to be dynamic in the sense that
some parameters may be removed during the adjustment process.
This removal can be performed smoothly by introducing ficti-
tious observations

3
e
N

[ S— 1

E  identity matrix, size [

g’ s
P diagonal weight matrix, size

, however, onl
lement in the

3.2 Partial reduction: The normal equation system arising
from (3) has the form

rx
N j—| = b (4a)
s
where

N = - {"—j:b}
sx| gs -SJ
H
m
b ATP, 1
Far B L
7 77
bh = had — & (4¢)
= = 7 Ty
b_ B™P. 11| .
T ~ 1 1 : T w ; : on o 7l - .
Let us solve the basic model by the symmetric triangular fac-
torization
A oy T, T_J . = - -~ F= A7 (’_\
! = L i 5 Tactorize o 5 2}
; o oo .
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exle = P solve y_, : (6)
T (o) ~(0)
Lxmx = yx5 solve 2 R (7)
T
(o) _ -1 _ =17 -1 - (o)
Yoz = Vex T Faz oo : compute &> (&)
T T
. I"P,,1 -y Yy . 2
oéO)gz / Ll x Yz ; compute 0(0) , (9)
n—=u ©
x
where ﬁ(O) solution of the basic model,
Q(O) weight coefficient matrix of the unknown para-
xx ;
5 meters of the basic model,
8;0) estimated variance of the unit weight.

The factorisation (5) can be achieved by the standard Cholesky
methods or e.g. by some sequential algorithm (Inkild 1984).
The sparsity structure of Nxx can be fully exploited in the

factorisation as well as the sparsity of Lxm in the computation

of 9% (sarjakoski 1984).

The reduced normal equations of the additional parameters,
i ! ’

Nss s = bs R (10)

will now be computed with formulas

T - T . T
Loboe = W55 solve L_. ., (11)
e ! : 12
N, = Nss - Lstsx’ compute NSS, (12)
14 !
bs = bs - Lsxyx; compute b (13)

The possible numerical instability caused by the poor geometri-
cal quality of the extended model has no influence when forming
(10) by (11) - (13). The only consequence 1is that Voo might be
singular.

The actual methods for analyzing (10) and computing an estimate
for s are discussed in detail in the next chapter. Once we
have computed some estimate 3(2), the corresponding 2(7) is
given by formula

v 2t = (P _ oy oy (%) (14a)
X X X xS
or more directly
; . ; o 1 [',7'
T &(i) =y - T §($)5 solve ﬁ‘"). (14b)
XX el s
(1)

(see next chapter for details) is available

~ > s
after the estimation of 5'°/, the Qéi/

e

Assuming that st
matrix can be computed

by updating ¢_  matrix:

Js ol
W
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7 A - r+ . - 14 -~
i /1 — L Ol'\ I

zx sz sx? SOLVE Hops (15)

(7) T (7)

o = - M s
xs Tex Yeeg? (16)
I I 1P
J ~ O/ P .
Q, Vel - 9} - ,’“ J A . \
zx ‘rx “xs Tsx (17)

)

-
[
[0
s

can be updatéd

8~

Because of the additive nature of (17), ¢

s

selectively for desired elements, thus saving computational
work considerably (Sarjakoski 1984).

4 METHODS FOR ESTIMATING s

4.1 Orthogonalisation method: For the reduced normal equa-
tions (10) we can make orthogonal transformation

T ' . T

L ?
CTN CCTs = (O7b (18)
88 , 8
H
where ¢ 1s the orthogonal matrix of eigenvectors of V_ .
Maxing substitutions
T L
D=cCN ¢ (19)
T
t = C (20)
7 H
w = b (21)
bl
we get
Dt = w. {22
D being the diagonal matrix of eigenvalues of ¥ the elements

88

of ¢ are mutually orthogonal. It is important that the possi-
. s = ar . i N -

ble singularity of ¥_ does not prevent the computation of

oo

&y
[Nl

eigenvalues and eigenvectors by using e.d. - algorithm
(Bowdler et al. 1971). Numerical experiments carried out by
the author have revealed that it is extremely important to
scale the original v, . matrix to have diagonal elements of

unity for getting a clear separation of the elements of ¢.
Noting by § the diagonal elements of V' we get the scaled
=1

58
. a7 I L - i PR b I 1y 4

matrix N = also after the partial reduction:

38

_1/n H _7/’n
—_— _ 1/ z., i/
N = 8 N g T, (23)
ss ss
The itatio £ nvalues and Sonvectors well +1
The computation of eigenvalues and eigenvectors as well as the
application of (19) - (22) is now performed with respect to
M " ) f ~ ;.
N . However, without losing generality, in the following

It is noticeable that the orthogonalisation procedure fully
corresponds to the following modification of adjustment model
(3)

937
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B' = BC (24a)

Ax + B't = 1 - v, Pll' (24b)

Once the parameter vector %z has been estimated from (22), some
elements of ¢ being set to zero (rejected), for a model exten-
sion noted (Z), we can compute §(%/ and Qflj by reversal trans-
formations: 58

NCPRNANEY) (25)
(z) _ (z) T
QSS - CQtt C 3 (26)

where ng)ié the diagonal weight coefficient matrix with zero-

elements corresponding to the rejected elements of ¢. The com-
plete model is now solved by using (15) and (1l6). :

4.2 Because of the orthogonality the procedure for selecting
elements of ¢t to be included in the extended model on the basis
of their statistical significance is straightforward i.e. a
strict application of Student test. A simple pretest is,
however, necessary for rejecting elements ¢, with very low
value of dtktk (c.f. formula (2¢)).

The variance of the unit weight is given by

k

(o) I, . _ T :
ssz% 1Pl -y, (27)
sst) = 5571 _ e (28)
(i) £ty PPy
~(2)2 e (29
o, =8 /(n = u, = ul*) (29)
where SS(?) the weighted sum of residuals, (Z) noting the

. current version of model extension with (o) for
the basic model,

tk the element of ¢ being under consideration,

uéz) the number of orthogonal parameters in the ex-
tended model (including the one under consider-
ation).

The use of the measures of geometrical quality according to

(2a) - (2b) complicates the selection procedure considerably.
This is due to the fact that the orthogonality does not help
in the application of tests (2a) - (2b). There are 2Us - 1

combinations of elements of ¢, which all should be tested in
principle. ,

For avoiding a complete search a neuristic alqorithm based on
the technique of principal component analysis (see e.g. Afifi
& Azen 1979) is proposed:

1. Add the element ¢, with the highest value of dt . into
the model if &7k
- it is statistically significant and
- the extended model including ¢ and the previously

accepted elements of ¢ passes the test (2a) - (2b).
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2. Repeat step 1 until all elements of ¢ have been processed.

4.3 The procedure of stepwise regression analysis is also
well-known in the statistical analyses. Its purpose is to
select the "best" set of predictors from a given set of candi-
dates. It is operational also for selecting additional para-
meters, now applied for the reduced normal equations. The pro-
cedure augmented by the test of geometrical quality is as fol-
lows:

Let us note by

S the set of candidates, i.e. the elements of s vector,

R the subset of § currently included in the extended model
(R for regression),

8 the subset of S currently waiting to be included into the
extended model (9 for queeing), @ = C.R in every step of
the process. -

|

Algorithm: |

0. Initially R = 0; 4 = S.

1. Inclusion phase:
la. Terminate process if § = ¢ = 0.
1b. Compute Student test values ¢, for all g€ ¢ (see

below for details). K
lc. Select cand, such that

12 4 p

cand. = max (t_J,

7 - g
ge &
ld. Terminate process if £ P < t G e s
cand. in=1limit

le. Add cand7ﬁ intec the model for trial, i.e. add ca%dir

into R. ° o

2. Exclusion phase:
2a. Compute Student test values t for all r&ER (see

below for details). -
2b. Select cand such that % , = min (% ).
out cand , - r
out ren
C. I < ¢ .. hen:
2 £ tcand “out-1limit COen
QUT
de cand
3. Inter

3a.

removal)
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4b. If the geometrical quality passes test (2a) - (2b)
then: .
set £ ;= R

last-accepted
else
remove candy, from S (permanent removal)

reset % := Rlast—accepted'
4c. Go to phase 1.

5. Termination

RZast—accepted is the set of additional parameters to be

finally included in the extended model.

In the inclusion phase of the algorithm used ti has to

n=limit

be determined heuristically. A reasonable choice is I < ¢, _

limit © 2. A low value -results in many trials of combinations
for a proper set of predictions. The value of ¢out—2imit
termines the predictors that will be kept in the model. It is
rational to select ¢ according to the conventional

out—-1limit
Student test.

de-

 This approach makes it sure that each parameter in the final
model has a value differing statistically significantly from
Zero.

For computing the Student test values in the inclusion phase,
the reduced normal equations of the included parameters must
be augmented by one candidate at a time. Let

N(r)g(r) - b(r) (30)

be the reduced normal equations according to formula (10) for
the set R of parameters, which are included in the current

model, noted (r). Let the reduced normal equations for trial
be
( A~ (t
N (t) 3 (¢) b(t) with partitioning (3la)
(P)l ~ (r)
N, (=N )l N s b, (=b )
RR Rq i I RS SRR (31b)
ez l Yaq °q “q |

where R notes the set of parameters included in the model (r)
q notes a candidate (gq€4) which is under examination
to be added, resulting in the model (%).

Assuming we use Cholesky factorisation we have for the model
(r) '

T _ ,
Lprtrr = Yppe (32)
Lpp¥p = Pps (33)
) _ -1
diag (Gpp) = diag QU (34)
where LRR’ Yp and dzag (Qqq) as well as SS(P) have been compu-

ted.




The soluticon of (3la) is an easy updating procedure following
analogically (5) = (17):

T T .
T 7, = A N ;«"]
UP“ gR NQH’ solve Lor (35)
m
] =V - I It .
*JG’C?’ qu GR QR (36)
A - ﬁj:-l (37)
qq aq »
2
o=t/ (38)
qq qq
-7
= (b =L _y.) (39)
Y9 = "qq 'Pq T “qrYR
s =17ty (40)
q qqg 9
/4 ) o
55 = 557 _y (41)
(8 () NENCI
o} = 58 (n=u_-u_"") (42)
@] X 3
where 1'?’ is the number of additional parameters in the

8

7

model ().

The accomplishment of (35) = (42) is necessary for the Student
test value:

- ~ A{ﬁ}-z—f/}g
Z, =8 © 4 . (43)
Lg qg 0 qq
qg&e 4
Once the candidate g = candJn has been selected for inclusion
~ 2
we also need g and Q:Q according to formula ({(3la) - (31b) for
i L4
the Student tests of the exclusion phase:
" :‘ ~ -;-T ~ 5 ,—\ ‘i . B
Lpr 8p = ¥g ~ Igp T solve s, (44)
rm T T 1 A
- f = = ~ » AF a
“RR Ma“ T MR solve JgR, (45a)
7 14 1 {zﬂ} 7 T
7 o = A4~ (0O VoA oy MET 0 M j A D
arag | “pp/ < arag (g Jrarag {1 aqﬁagqq;ifqi?} . (45b)

Worth noticing is that the procedure here is based o
formulas (l4a) - (17), now, however, applied for a dif
partitioning.

When a parameter (cand  .J) is removed from the set R (exclu-
sion phase}, the factorisation changes for the parameters taken
into the model after the inclusion of cand_ .
Ll
The computation procedure according to (35) - (42) must be
renewed for these parameters. An updating procedure (Inkild
1984) can be useu for decreasing the amount of computations.
Nevertheless, because of the usually small size of the systemn,
it has, in this case, very little of practical significance.
4.4 More on computaticnal considerations: The presented
algorithms include a strict test of the gecmetrical gquality
H i ~1 : 7 ~ LA 5 )
according to (2a) = (2b) requiring dZag (Q{t/) and dzag ’Q;:)/
e vv
. . 4 (27,75 -
each time. The computation of diag (Q;m’)ls effective by




942

using (15) - (16). Actually, only one column of Lsx is under

consideration. This holds also for the principal component
technique assuming Lsx being modified explicitly following the

idea of (24a) - (24b):
r| =T . (46)
sX sx '
The computation of diag (ng)) according to
. - (Z)
(2) _ _ T
“ov T P11 {AIB]:Qgg [‘413] Y

reguires more extensive computations even if the sparsity can
be exploited (Sarjakoski 1984). It is not economical to apply
(2b) directly. Instead, a pretest can be used:

-5 (1) 5T
Let W = B st B™, (48a)
Zpre = max (Wii)’ 2 = 1,.00.,2m (48b)

where B is an artificial design matrix, size [2m, u4 , for

additional parameters, based on the use of coordi-
nates of m image points located in a regular grid
pattern, :
W.. can be interpreted as an effect of the current selec-
tion of additional parameters (set R) transformed on
the image coordinate system.

The geometrical quality is considered degraded, if

Zpre g upre ! (43)

[V

where o is a heuristically defined constant, I < o <
pre pre

assumingly.

5 FINAL REMARKS

The methods presented base essentially on the modification - .
explicit or implicit « of the reduced normal equations of the
additional parameters. These equations cffer the full infor-
mation we need for the statistical tests. :

The methods above are selection methods, i.e. some of the
candidates may be removed, However, an effective realisation
of other methods based on the analysis of the reduced normal
equations is also possible. E.g. the method of iterative esti-
mation of variance components of the fictitious observations

of additional parameters (Ebner 1978, Fdrstner 1979, Heikkild

& Inkild 1978) is alsoc effective when using the approach

above.

A simultaneous analysis of the additional parameters has been
used in the methods above. More complex analyses can also be
based on the use of the reduced normal equations of additional




parameters: In a hierarchical approach discrete sets of addi-
tional parameters are analysed and possibly included into the
extended model one after another. This approch is applicable
e.g. for first handling some global parameters and after that
the others with a local influence like stripwise sets of para-
meters. Stripwise sets can be joined with proper constraints
if there is no significant difference between their values
(Ebner 1976). Many other examples can be found.

All the presented methods result in a single solution of the
complete normal equation system, being thus computationally
effective. The problem of numerical instability never occurs
until in the analysis phase of the reduced normal equations.
Even then it is controlled by the test for the geometrical
quality of the extended model.
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