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AN EXTENDED MATHEMATICAL MODEL FOR AERIAL TRIANGULATION

Ralf Schroth
Photogrammetric Institute, Stuttgart University
Germany, Federal Republic

Commission III

Summary: In high precision point determination the variation of systematic errors can be de-
scribed by an extended mathematical model. There the additional parameters are introduced as
varying quantities with blockinvariant mean values and the correlation between the images is
modelled by an autoregressive process. The model is discussed with respect to proximity to reality,
numerical effort and the possible increase of accuracy based on simulations. The impact of the mo-
del onto future experiments for the determination of the stochastic properties of image coordi-
nates is shown.

Zusammenfassung: Bei der hochgenauen photogrammetrischen Punktbestimmung 1dBt sich die Vari-
ation der systematischen Bildfehler mit Hilfe eines erweiterten mathematischen Hodells erfassen.
Hierbei werden zusdtzliche Parameter als um einen blockinvarianten Mittelwert variierende Griben
betrachtet und Korrelationen zwischen den Bildern durch einen autoregressiven Prozef modelliert.
Das Modell wird in Hinblick auf Realitdtsnihe, numerischen Aufwand und zu erwartende Genauigkeits-
steigerung an Hand von Simulationsergebnissen diskutiert. Die Auswirkungen des lfodells auf kiinf-
tige Versuche zur Erfassung der stochastischen Eigenschaften von Bildkoordinaten werden angespro-
chen.

Resumé: Dans la. détarmination photogrammetr1que de points avec trés grande précision, on peut
saisir la variation des erreurs systématiques & 1'ajde d'un modé€ie mathématique e]arg1. Dans ce
procédé, on considére des parametres supplémentaires comme des données variant autourd'une valeur
moyenne de variance de blocs nulle et on modéle des corrélations entre les images par un prccessus
autoregress1f A 1'aide de résultats de simulations on discute le modéle en vue de prox%m1te de la
réalite, du temps et des moyens numeraquement investis et de 1'augmentation de la précision &
attendre Les effets du modéle pour de futurs essais de saisir les propriégtés ;tochast1ques de
coordonnées-image sont abordés.

1. INTRODUCTION

The mathematical model for aerial triangulation has reached a level of high quality. For most
practical applications like point determination for éartographic plotting or densification of
gecdetic networks, thé existing'methods for block adjustment, especially with bundles, on which
this paper will be restricted, are sufficient. The status of the refinement of the mathematical
model has nearly been unchanged since the proposal by Ebner (1976) to describe the additional
parameters as stochastic quantities. The refined functional model by using locally, e.g. stripwise,
different sets of additional parameters for compensating changing systematic effects usually gives
good results, provided that numerical instabilities by overparametarisation are prevented. But the
stochastic model still is very simple. In practical application the image coordinates are assumed
to be uncorrelatad and of equal precision. The standard deviation of the additional parameters
mostTy are restricted to the extreme values zero or infinite (caused by operational reasons) or
are set to the values of the expected size for the reasons of stability and increase of accuracy
(see KilpelZ, Heikild and Inkild (1981)).

The nearly stagnating evolution of the mathematical model in the past few years is essentially
caused by the unknown stochastic properties of the image coordinates just like the correlations
within and between the images. But there are still discrepancies between the theoretical expecta-
tion of the possible accuracy by photogrammetric point determination and the empirical results,
which is the motivation to work on further development of refined models for aerial triangulation,
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Some empirical investigations concerning the stochastic model have been conducted by Klein (
Schroth (1982). The results of the testblock Appenweier have shown, that the
values of stripwise additional parameters significantly vary from strip to strip {Klein (1980)).
aracteristics are proved by Schiicher (1980} with his analysis of the stochastic model
s investigations have shown & signif
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effects from image to image. Based on these results Schroth (1982) has
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lysed the systematic errors of time series of up to 76 images, which were derived from flights
n

a
with reseau cameras. The results can be summarized as follows:

- The systematic effects significantly differ from their mean value.

correlation between the images caused by the systematic errors goes up to 70 %. In the

1
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average it ranges between 10 and 30 %.

- The achieved autocorrelation functions can be approximated by an exponential function
exp(-c-Lag), being characteristic for a discrete first order Markov-process.

A1l these investigations show that the additional parameters may be modelled as stochastic vari-
ables with a non-zerc expsctation. The separation of the stochastic model into correlations within
the images on one side, and corre]atiens between images on the other seems to be meaningful.

After an introduction in the time series anaiysis, the paper will present an extended mathematical
mode! for the bundle block adjustment, A comparison of different mathematical models by simulation
and the discussion of the new model with an outlook on further tests is enclosed.

2. IMAGES AS TIME SERIES

The analysis of the stochastic properties of image coordinates and their definition in the mathe-

32

matical model requires a structured stochastic model. We will separate the stochastic model into
correlations within and between images. This section will be restricted to the variation of syste-
matic image deformations. As an example figure ! shows the variation of parameter p, (Ebner’'s set
of additional parameters) within an analysed flight mission of the testfield Rheidt (see Schrot

(1382)).
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The structure of the photogrammetric process and the empirical results suggest to treat the images
as time series, whose deformations may be modelled by a Markov-process. So the sequence of a single
parameter z. {type of systematic deformation) can be described by the following autoregressive
scheme:

K :
Z = igl 82y T (2.1)

Thus, it is assumed that ztlinearily depends on the x previous values z of the parameter. In
eq. (2.1) the expectations E(z)=E(e)=0 and the dispersion D(E)=°Zlo_k
is the order of the autoregressive process, p the number of epoches (images), a, the process co-
efficients, z, the stochastic variable of the systematic deformation at the time ¢ and € the

are assumed to be given; k

corresponding error of the process which is described by white noise. A necessary condition of the
autoregressive procass is the stationarity, i.e. the trend of the systematic deformations must be
eliminated (E(z)=0).

Eq. (2.1) may be rewritten as a vector equation

Dz

)

n (2.2)

with 5? = [V, suy V are process errors till the starting point. -

1 RIS ep}, where v

k? “k+ k

For an autoregressive process of order 1 (AR(1)-process) the coefficient matrix D (o(D)=pxp) and
the covariance matrix D(g)=§zz (O(Ezz)=pxp) of the systematic deformations can be written as

. = .
1 0 ® 3 T:a-z
-a 1 . . 00 1 0
D=1 . . . el EZZ = g? . = czgﬂ” (2.3)
.. .. . 0 .
00 . . -a 1 1
| ] L )

where a is the process coefficient.

The extension of eq. (2.1) to several time series of systematic deformations with the same stocha-
stic properties between the epoches leads to the following covariance matrix:

C =0 _sacC ' (2.4)

with the Kronecker product ® and the covariance matrix ESS (o(§55)=qxq, g=number of deformation
types) of the systematic image deformations reduced by their trends.

The estimation of the process coefficients and more detailed information about time series analysis
is described in Box/Jenkins (1976). For the following extended mathematical model eq. (2.1) is
essential, because it enables a functional formulation of the stochastic properties of the syste-

matic image deformations shown by the covariance function for an AR(1)-process:

Clz,, 2,) = 22! P30, (2.5)
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Thus the parameter a essentially is the correlation betwesn two param 5 of adjacent images.
It is umed to be iaentical for all parameters. Based on the results of the analysis of 5 flignt
missions we will restrict the AR-process to order one

3. AN EXTENDED MATHEMATICAL MODEL FOR PHOTOGRAMMETRIC POINT DETERMINATION

(1} In the following mathematical model the expectation of the cbservations will be a function
of fixed and stocnastic unknown parameters just like the collocation model. The fixed parameter
group x contains the 6 transformation parameters of the perspective projection for each image and
the unknown object coordinates. The stochastic parameter group contains the random systematic de-
formations z which vary about tneir mean values {expectaticns) z,- The expectations z, simultane-
ously stand for the trends of tne AR{1)-processes and belong to the functional part of the model.
The vector z, is equivalent to the blockinvariant additional parameters for selfcalibration. The
variation of the systematic effects is described by the correlations between the imagewise para-
er groups E{i) (i=epoch, image) and by the stochastic properties of the individual parameters
i ) represented by their covariance matrix L.+ The correlations between the epoches are modelled
by an AR(1)-process (see Fdrstner (1982)).

So the extended model may be defined in the form of the following GauB-Markov model:
(1Y [ Ax+Bz_ +diag(B'* )z \ (ii [ Cee !
[l Bt B 0 - - i ] - _ ]~ |- IS DR
C i = _ i and D jo = i | [
\0/ A\ {(Delglz / \o/  \D |

where is in addition to section 2:

1 i = vectors of observations including additional observations for
control points (o{l)=nx1, 0{Q)=pgx1)

X, A = vyector of fixad unknowns {traPQformation parameters, object coordinates)
and ccrreapondang coefficient matrix (o{x)=ux1, olA)=nxu)

Zys B = vector of unknown aﬁﬁaf1ena parameters {blockinvariant) and corresponding
coefficient matrix {o{z,)=qx! 1, o(B)=mxq)

z = vyector of the unknown imagewise additional parameters, ordered wit
increasing image numbers {o{z)=pgx1)

. RS AN s oz - ~ {1y

diag(B 7'} = corresponding coefficient matrix of type block diagonal (o(BY))=mixq,
oxdTag(B**')-mx pa)

L. = covariance matrix of image and control point coordinates (o(C..)=nxn}

[ = covariance mairix of the additional parameters, see eq. (2.4),

3

\G(:z,,-pcxﬁq'

il = number of observations of image coordinates

= number of observations of image and control point coordinates

s a strongly refined functional part, because the varia-

1 a
tion of the systematic deformations described by the additional narameters is integrated by their
imagewise determination. Equally the correlations between the images are comprised by the functio-

he restriction on the AR{1)-process is caused by foregoing
and the easy managing of this type of stocha

empirical investigation
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parameter set for the additional parameters is not restricted
clear practical advantage; becauss in this case the covariance matrix

assumed to be a diagonal matrix.
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The stochastic model is separated intc two parts. First the stochastic properties of the systema-
tic errors are described by the covariance matrix {zz which in case of an orthogonal parameter
set and of independent time series for each parameter is a diagonal matrix. The remaining part of
the stochastic model contains the stochastic properties within the imageé and those of the geo-
detic control. The structure of the covariance matrix of the image coordinates has to be analysed
by further investigations. It should contain the errors of the measuring process and the local ’
short periodical image deformations caused, for example, by unflatness of the pressure plate,

the moving part of the pressure plate or climatic influencesduring the exposure, i.e. the physi-
cal influences. But the refined functional model and the consideration of the correlations bet-
ween the images probably do not put great influence on the parameter estimation caused by a simp-
1ified covariance matrix just like a diagonal matrix for the image coordinates.

(3) The parameter estimation in the Gauf-Markov model of eq. (3.1) is a well known procedure.
The reduction of the normal equations onto the orientation and the additional parameters is
possible, if the observations can be treated uncorrelatedly, at least if no correlations between
points can be assumed. The stochastic treatment of the imagewise additional paraméters including

the AR(1)-process causes only an addition onto the reduced normal eguation system. The estimation
of the process coefficient a is possible, but it must be an iterative solution because it occurs
in the functional and the stochastic  model (see eq. (2.3)). Also the estimation of the cova-
riance matrix Cgg is feasible by variance-covariance-component estimation. Especially if the co-
variance matrix Css is a diagonal matrix the estimation procedure is not so expensive (see
Forstner {1979)) presumed one has got enough images to reach convergence.

The problem of overparameterisation will be not critical, because the stochastic treatment of
the imagewise additional parameters will not reduce the redundancy under the level of the mathe-
matical model with biockinvariant parameters.

The increase of the numerical effort with the extended model against the model with blockinvariant
parameters essentially is a function of the numper of parameters per image. The setting up of the
normal equations increases the number of operations (multiplications) by the quadratic factor of
the ratio of transformation parameters to the sum of all parameters per image. For the solution

of the equation system the increase goes up to power cube of this ratio.

(4) The application of the extended model will be restricted to the field of high precision
point determination. So the main task of the model is to reach a high level of accuracy in photo-
grammetric network densification or deformation analysis. In the near future however the scienti-
fic aspect of the model will dominate. The possibility of the variance-covariance estimation of
the additional parameters and the estimation of the correlation between the images allows further
investigations on the stochastic model with empirical tests.

So the extended mathematical model is a further step into the refinement of the mathematical
model for aerial triangulation. It contains the main part of the earlier neglected stochastic
model. The efficiency of the extended model will be proved by simulations in the following sec-
tion.
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4, COMPARISON OF DIFFERENT MATHEMATICAL MODELS BY SIMULATION
The extended mathematical model (eg. {3.1)) is now compared with different models for aerial

arison is to show the increase
t determination with the increase of refinement of the mathematical model.
A photogrammetri Tock of 4 stripes and 6 images sach is simulated with 60% foreward and 'side
overiap (see fig. 2). Each image contains 25 points regularly distributed by the 5x5 scheme.
For planimetric and vertical control 12 points are used (i ~1.5b). Only the inner area (fig.
hatched area) of the block is applied for situating the check points as the geometric stability

there is guaranteed. The coordinates of the control and check points are simulated free of error.

— Fig. 2: Simulated block with 60% foreward

. and side overlap
s « 3 8 * ® . 3 )
b = base length
. L + = image, resp. check point
a = planimetric and vertical contro}
» 2
@ = vertical control
. » #/ = area of evaluation
’ » *

The image coordinates are mounted with random errors of fum standard deviation. Table 1 shows the
simulation models with different types of systematic effects onto the image ccordinates which are
usaed for the investigations. With each simulation model independently has been created 10 blocks

type random errors svstematic sffscts corrglations
~E=1;m blockinvariant imagewisse {AR{l}~procsss)

E(z)=0, S{z)=C__ an0 .7

SA X J— —— [—

sB X X P R

sC X —— X e

j=1s] X X X —

SE X A X X

Table 1: Simuiation models Si

to get a sufficient sample. The systematic errors are generated by additional parameters of Grin
n

(1878) for 25 image points, Tent to the parameters no. 5, 6, 7, 8, 11 and 12 of
Ebner's set. Their mean values, the corresponding standard deviations and the correlations between
1
1

the images are results of the au s
tion of the correlation a process coefficient of a=0.7 is used. Table 2 shows the chosen values

for the simulated systematic effects.
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] parameter type _
(Ebner's set) 5 [ 7 8 11 12
Mean value [uml -1.7 1.2 | -5.8 |=1.3 |-1.1 |-0.6
variance [um?] 0.52 | 0.79 | 0.80 | ©.87 | 0.22] 0.25

Table 2: Applied values for generating the systematic errors
(standardized onto the maximum distortion effect in
the image)

The- different mathematical models which are applied by the analysis start with the simple per-
spective ‘model and the mode! with blockinvariant additional parameters and are refined using the
extended model analog tc the simulation models (see table 3). In addition statistical informa-
tions for each type of determination are given.

A1l the determinations of the different simulated blocks are done by an extended version of the
programme PAT-B at our mini-computer Harris H 100. The results of the block adjustments are shown
in table 4. .

type mathematical modal number of redundancy
functional stochastic observations | unknowns ’

Ra | PP gyymcilL 1200 591 509

%8 | s°, a3 Ell'dil 1200 597 503

RC PP, 1AP » - : gu‘ 652' gzz'diag 1344 738 609

RO | PP, BAP, TAP Sqy=ell, C,p=diag 1344 741 603

RE | PP, BAP, IAP, CORR| C;,= c:_Lr_, C, =diag, #=0.7 1344 741 603

Table 3: Mathematical models Ri {i=A, ..., E)
PP = perspective projection
BAP = blockinvariant additional parameters
IAP = imagewise additional parameters
CORR = correlation between images formulated
by AR(1}-process

SA SB SC 5D SE

RA/SA RA/SB RA/SC RA/SD RA/SE
RA [0.56 0.61 1.23 0.59] 1.28] 1.76 8.36 1.54, 0.73]0.84 1.63/0.79} 1.31} 1.84 8.51 1.60]1.46]/1.83 8.53[1.86
1.48] 1,50 3 .48 1.01] 3.7%] 47615 .33 2.76| 2.09] 2.09] 4.16] 1.34| 3,56/ 5.1915.54] 2.86]3.59]4.9505.30{3.04

RB/SB RB/SC RB/SD RB/SE
8 0.571 c.58 1.17 0.58 0.72{0.85} 1.583/0.79/0.75{ c.80 1.64l 0.78]/0.9610.87] 1.85{0.92
1.56] 1.53 3.17 1.00{2.0912.12 4.17]1.33]1.98] 2.14 4,21 1.33{2.37,2.29 4,211 1.53

RC,/SC RC/SD RC/SE
RC 0.61{0.68 1.27/0.54{0.73} 0,94 2.54 0.8410.82]0.89} 2.52|0.85
1.74{ 4,740 3.5710.89/2,11] 2,48 5.39 1.57/2.2812.171 5.02] 1.64

RD/SD RD/SE
RD 0.6110.67 1.34 0.64/0.70/C.68 1.30/0.59
Example: 1,55/ 1,714 3,534 1.0001.79/1.75 3.30{ 1.06

ODererm,/Simul. ut mean square values qf_g;_;%qa]s RE/SE
RE Fx My ¥z Yxv £t ::xi:::kcigig:z;;? dvi‘.‘;xf':;:n‘cas ©.87/0.6% 1,301 0.688
t € = A at check points 1.73]12.73 3.37]1.01

x k4 z - 55: mstimated standard deviation of

the unit weight

Table 4: Results of the block adjustments (in um);
mean values of 10 cases each
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alysis of the 15 combinations of simulation and determination models leads to the following

i
)
=

T. Using identical models for simulation and determination (diagonal part of table 4), the re-
tults are equivalent to the theoretical expectation of the accuracy of bundle adjustment shown

. The mean square vsiues of residuals of check points range in planimetry
0.66 um and in neight {;jz“= between 1.17 and 1.31 um {(theoretical valjues:
). The estimated variance of the unit weight is the same as the simulated

noise (5; ~ ¢%); O, ranges between 0.99 and 1.01 um.

2. The increase of accuracy between the simple model RA and the model with common systematic RB
goes up to factor
jagiery iy .
RASE - RBSE Myt
simulation model (

o

2-7; for example RASB = RBS .54 - (.58, u, : 8.36 » 1.17) or
1.66 = 0.92, u, : 8.53 = 1.65). But with increasing proximity to reality of the
< =

B

3. The expected behaviour of the model RB, which theoretically is only considering the common
systematic effects, can be confirmed at the simulation model SC. The results of the cases RASC
and RBSC are identical, so the model RB will not be infiuenced by the Tocal systematic effects.
Equally the case RBSD gives the same result, so that also by superimposition of blockinvariant
and local systematic effects the model RB takes conly the common part into account.

4. The case RCSD gives significantly better results than the case RASE {(u_: 0.84 =
v
Bz @ 2.62 « B.36), although the model RC is expected to compensate only the loca
-
.

5. There is a significant increase of the accuracy from model RB to RD by factor 1.2 - 1.4, which
can be shown at the cases RBSD = RDSD {(uy,: 0.72 ~ 0.64, u, : 1.64 ~ 1.31) and RBSE ~ RDSE

{u,,: 0.92 = 0.69, u_ @ 1.65 ~ 1.30). This factor rises with increasing level of simulation

6. The consideration of the correlation between the images with the model RE causes only an in-
{RDSE = RESE: Hyy? .65 — (.66,

ut in the case RDSE the astimated variance

- 4 ey 3 b i e
crease of the accuracy of 5% camﬁa.cd with the mode

an émprovement consid

7. As a consequence of the results of this simulations all the analysed mathematical models can
ordered with increasing level of accuracy: RA— RC — RB~ RD ~ RE. The higher level of the
model RB with the blockinvariant additionzl parameters than the model RC with the i wise addi-
tional parameters is causad by the dominating effect of the common systematic defowma ions (mean

value) against their variances in this special study. Decisive for the efficiency of the models

d
RD and RE with the common and the imagewise additional parameters is the ratio of the variances
+

by

of the additional parameters to the noise o

Of course this investigation restricts only t
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pattern, but it is a typical arrangament for precise point determination and the simulated data
re of realistic material. So the results may give some detailed informations ahout the refine-

S
ment of the mathematical model for aerial trianguiation.
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5. DISCUSSION

In this paper it is shown that a further refinement of the mathematical model is successful with
respect to the accuracy. But it is also evident that the rate of increase cannot be as high as
in earlier stages with the introduction of the additional parameters. Furtheron the increase of
accuracy requires a high numerical effort.

The simulations did not prove the effectiveness of integrated correlations between the images
onto the accuracy. But there is nearly no additional numerical effort to consider these correla-
tions compared with the imagewise setup .of additional parameters.‘The 1ow additional numerical
effort justifies the integration of correlations between images by 5% gain in efficiency. Further
investigations especially with empirical data should be done to analyse this effect. Additionally
the variation of the systematic deformations, the order of the AR-process and its process coeffi-
cients, the imagewise dispersions and their mathematical formulation, e.g. by covariance func-
tions with snort correlation distance, should be investigated.

Therefore some practical tests for the analysis of the stochastic properties of image coordinates
are suggested:

1. A first step might consist of investigations of reseau images by time series analysis recent-
1y shown by Schroth (1982). If an additional reseau camera is mounted at a conventional photo-
grammetric flight, these images can be obtained in a cheap way under realistic conditions,
because no ground control is necessary for the analysis, Of course.in this first step one cannot

get the effects of point definition, refraction or image motion.

2. After the correction of the correlations between the reseau images and the local systematic
deformations one can estimate and analyse the covariance matrices within the images with methods

shown by Férstner and Schroth (1982).

3. For gett{ng the whole systematic effects with the above mentioned methods, investigations
with test fields are necessary. The geodetic coordinates of these points must not really be
known, because one photogrammetric block could be taken as control and the remaining differences
to other blocks can be analysed. Because these are expensive investigations, a proper planning
has to be performed by simulating different cases, which have to be analysed in view of getting

the optimum parameters for such a project.
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