996

AN INVESTIGATION OF THE SCOPE OF HIGH ORDER
POLYNOMIAL DIGITAL ELEVATION MODELS
Willibald P. Segu

University College

London, England

Commission III

ABSTRACT:  Computer-assisted application of functional digital elevation
models have had widespread use. Most of these applications are based on

local low order mathematical functions. This paper presents some results
of work done on relatively large cells, 1 x 1 km square, with high order

double Chebyshev polynomial functions. '

INTRODUCTION: A functional digital elevation model is taken here to mean
3 mathematical expression that expresses terrain elevation, z, as an
"approximate" function of plan coordinates x and y.

That is,

= f(x,y) : (1)
This is an extension of a classical definition of digital elevation model

(DEM) (Doyle, 1978) to include both the numerical data representing the
terrain and the means with which additional data may be interpolated.

Topographically speaking, terrain elevation is not necessar11y a function

of plan location. But given a set'of terrain data Y2 i=1,2, ...,n,
a mathematical expression can be written to approx1ma{e z és a functlon

of x and y, abbreviated as (1). The expanded form of (1) will depend on

the type of mathematical function employed.

Functional digital elevation models have been used in a variety of forms

in terrain surface modelling and/or interpclation. The commonest forms

are for example: linear (plane) surface function (Allam, 1978); bilinear
surface function (Leberl, 1973; de Masson d'Autume, 1979) or hyperbolic
paraboloid surface function (Grist, 1972); multiquadric surfaces (Hardy,
1971); bicubic polynomial surface function (Schut, 1968); and double Fourier
series surface function (Maxwell and Turpin, 1968). Most of these forms
have one thing in common, namely, they are relatively low order mathematical
functions. They are therefore suitable for defining terrain surfaces of
small patches (cells). This paper presents some results of work done on
relatively large cells, 1 x 1 km square, with high order polynomial surface
functions.

A power series polynomial function of z in x and y is a common form of
functional digital elevation models. That is,

z = a0+a1x+a2y+a3x2+a4xy+a5y2 o, (2)

Depending on the order of the polynomial, the number of the unknown
parameters, a5 is given by m
where

_ 1 (k1) (k2) |
n=a + + (3)

and k is the order of the polynomial. The values of a. in (2) can be
determined by least squares surface fitting method u51ﬁg redundant terrain
data, or by direct solution of n simultaneous equations. That is, from
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n observed terrain points, one can form n observation equations of the form
(2) which in matrix form is

AY

AR = S (4)

where A is n x m matrix of surface coefficients,
R is n x 1 vector of surface parameters (unknowns),

Sisnx ; vector of observations.
Assuming a weight matrix of W, the normal equations can be formed as:
ATuAR = ATWs (5)
from which,
R = (ATwA) ™ TaTus | (6)

But the solution of (6) is very unstable (Clenshaw, 1960) for high orders

of polynomial and/or §or large values of x and y. This is because it involves
inverting a matrix, A'WA, with large elements. For this reason, this method
has only been used for low order polynomials. Such polynomials would
invariably be suitable only for small patches of terrain.

s and hence high order peév“omiaié

In projects where relatively large size cell

are envisaged, an alternative to power series polynomials are the Chebyshev
polynomiais, The latter are particularly useful in Drejec s where a fixed
size cell is a unit of terrain definition area (Sequ, 1 84} Because of
the large size of the terrain definition cells so adopfed he fitting
surface polynomials tend to be of high orders except, of ccurse, for flat
terrain. This article w1;1 show tnaf there is some scope for this type

of surface functions.

DESCRIPTION OF THE PROJECT:

EW

T e object of this project is to investigate how the current forms of DEM's
Schut, 1976) can be modified to take into account specific reeu’reweqts
Of, say, highway route location by digital computers.

ign dates back to mid-1950's
itself to that same old
with a difference.

The use of digital terrain models for highway
(Doyle, 1978). This Frtzcle s still addressi
problem, i.e. use of DEM in highway design, but

=
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3
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Location of a highway route corridor through a planning region needs a
rational and cost-effective approach. 0One such approach is to define the
relief of the region by mathematical functions on patchwise (cell-wise)
basis. The adv3nzuges of this methodoleogy is that the cell can, to some
extent, be of any size comparable to highway design standards. Furthermore,
the digital elevation data can be acquired in any mode compatible with the
mafhematzcal function(s) to be adopted in the exercise, but independent

of the location of the final alignment of the route. This latter aspect
(flexibility in data acquisition pattern) is very advantageous to any route
(highway, railway, power line etc.) alignment project because the final
alignment is never known at data acquisition stage. Finally, these terrain
definition cells can also be adopted as units of definiticn of a route

rridor, hence as route location cells.
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ACQUISITION OF DEM:

Acquisition of DEM data requires a slightly different approach to that of
graphic data. The DEM data output from photogrammetric methods, topographic
maps, or ground survey methods are numerical. The modes for acquiring these
data can generally be classified as: (1) random, (2) regular, (3) semi-
regular. From the point of view of automation, the regular and semi-

regular modes are well-suited for the purpose.

Regdlar Mode: This is the regular grid pattern of data acquisition. When
this mode is employed in a photogrammetric technique, for example Leberl
(1973), the operation can be fully or partially automated (Allam, 1978).

Semi-Regular Mode: This mode operates very much like the regular mode save
for the data spacing along scan lines. Scan lines or profiles are set out
at regular intervals whereas the data points along them need not be equally
spaced. This provision adds extra flexibility to the method in that the
operator can add extra points in areas where he deems it necessary. He

can adopt-a measuring technique which is not rigorous in data spacing.

For example, recording contour heights along a profile, plan locations are
not equidistant. If an operator chooses to record elevations at regular
intervals along a profile or scan line, then the method reverts to "regular
moge". So regular mode can be said to be a special case of semi-regular
mode.

Random Mode: This pattern is said to be the most appropriate of the three
as rar as representing the terrain is concerned (Mark, 1979). The method
can pick out the salient terrain points such as breaklines, crests, droughts
etc. These data can then be used to derive grid data by interpolation if
required for example in contour plotting etc. Despite this merit, the
operation suffers from one serious drawback in speedy production, namely,

it cannot be automated. The method is also rather subjective. Therefore
the author sees it to have a restricted application.

Because of the flexibility of the semi-regular mode of DEM data acquisition,
this project has adopted this approach although the original data used in
this report were available toc the author in regular pattern form. These
data were acquired by photogrammetric technique on regular pattern at

50 m grid at ground scale. The test data cover a ground area of 2 km by

5 km. '

DATA PROCESSING:

The observed elevation data are modelled to be in a form compatible with
the intended use. In this work, the use has been defined as a mathematical
expression (1) from which additional elevation data can be obtained by
interpolation. So part of data processing operation is to formulate and
solve a selected mathematical model. But owing to the limitation in the
use of power series polynomial form (2), Chebyshev series polynomial form
is adopted for this project.

Chebyshev polynomials are based on trigonometric functions (Fox and Parker,
1968) .

Tn(xc) = COS no (7)

in which
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-1 < x 5_1 (8)

c? —_C

and n is a degree of cos ¢. The arguments, xg, of a Chebyshev puivnuvial
T (x_.) lie between -1 and 1 (a standard rangey. Therefore in data proces ing,
the %ndependan variables, x, are first transformed intc the corrygpondzng

Chebyshev polynomial arguments. This transformation, sometimes referred

to as normalization, takes the form: .
ix'Xmax) * (x'xm1n)
X = (9)
C X

max ~ “min

Xmax and xm%n are respectively the maximum and minimum values of x's, making
*min X 2 max’

Equation (1) in Chebyshev series form becomes

k
z, = 2 AT (x.) (10)
X .p nntc

In the case of two variables, x and y say, an equivalent expression - a
double Chebyshev series form is

K j
- -« T v {4

XY T alp 1iO A iTa X IT v e) (1)
The expanded form of {(10) can be obtained by recurrence relation (Fox and
Parker, 1968); and its solution is carried out on curve-fitting principle.
The solution of a double Chebyshev polynomial (11) is also carried out on
the principle of curve-fitting as follows: having defined the boundaries
of a cell to be modelled, least-squares curves of a prescribed degree are
fitted along each profile data parallel to say, x-axis. Then the
coefficients of these curves are used as data to fit curves of a prescribed
degree along a direction normal to x-axis. This way of solving Chebyshev
polynomlazs presuppcses that the terrain data are acquired along parallel
lines (scan lines or profiles), e.g. in a semi-reqular mode.
In this experiment, the test data area was first blocked into regular cells
of 1 kilometre by 1 kilometre. The data were then fitted to a double
Chebyshev polynomial of degree 1 in x and y. The root-mean-square error
(RMSE) at the control points and at the check points (where applicable)
were computed and each compared with the pre-defined accuracy of fit
(i.e. RMSE = 3 m in this case). In the event of a computed RMSE being higher
than 3 m, the degree of fit is incremented by unity and the fitting routine
repeated. The degree at which RMSE < 3 m is adopted as the degree of best-
fit for the cell in question.
Five sets of tests were performed on 10 test cells (FIG. 1). The terrain
data in each cell were originally provided on a 50 m reqular grid. But
in the course of these tests, different data densities were simulated
by varying the configuration of the control data available for surface
*1+t1“§ as follows:
Set 1. all 21 x 21 observed data points (per cell) at 50 m regular grid
were used to compute Chebyshev polynomial surfaces. There were no checks.
The resulting RMSE and the corresponding degrees of fit are shown in

Table 1.







TABLE 1: ACCURACY OF FIT OF SET 1

CELL CONTROL POINTS RANGE IN
No. DEGREE RSE (m) ELEVATION (m)
urLC i (m N
A1 4 2.34 133.00
B1 2 2.73 106.40
A2 4 2.87 102.30
B2 1 1.85 70.30
A3 2 2.39 89.40
3 1 2.28 65.40
Ad 1 2.55 63.90
B4 1 1.88 42.80
A 13 2.95 208.50
B5 19 2.35 288.20
Set 2: the 11 x 11 terrain dabu points at 100 m regular grid form the control
data for a surface aclyﬁﬂma in each cell. Another set of 10 x 10 data
points also at 100 m regular grid are used as checks for the computed surf
The resulting accuracies of fit both at the control points and at the check
points and the corresponding degree of fit are shown in Table 2.
TABLE 2: ACCURACY OF FIT OF SET 2
CELL CONTROL POQINTS CHECK PTS. RANGE IN
No - \ ELEVATION
- R \ MSE (m
DEGREE RMSE (m) RMSE (m) (m)
A1 4 2.13 2.28 133.00
1 2 2.88 2.70 106.40
AZ 4 2.69 2.94 102.30
B2 1 1.90 1.80 70.30
A3 2 2.45 2.35 89.40
3 1 2.3; 2.12 £5.40
A4 1 2.48 2.32 63.90
B4 1 2.00 1.83 42.80
A5 8 2.53 7.89 208.50
B5 10* - 439.78 288.20
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Set 3: the 100 check points in Set 2 are now adopted as control points

while the 121 control points act as check points.

The results are shown
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in Table 3.

TABLE 3: ACCURACY OF FIT OF SET 3
CELL CONTROL POINTS CHECK PTS. RANGE IN
No. ELEVATION

DEGREE RMSE (m) RMSE (m) (m)

At 4 1.90 1.56 - 133.00
B1 2 2 11 3.09 106.40
A2 1 2.40 1.63 102.30
82 1 1.72 2011 70.30
A3 2 2.14 3.07 89.40
83 1 2.09 2 54 65.40
Al 1 2.28 2 87 63.90
B4 1 1.79 2.05 1280
A5 7 2,94 18.35 20850
85 9% - §02.28 28820

*Exact-fit degree

Set 4: the 121 control points used in Set 2 are once again used as control

in this step.
are used as check points.
but that of the check points is seml regular

are given in Table 4.

But now all the remaining 320 observed terrain data points
The distribution of the control data is regular,

The corresponding results

TABLE 4: ACCURACY OF FIT OF SET 4
CELL CONTROL POINTS CHECK PTS. - RANGE IN
No. RMSE (m) - ELEVATION
DEGREE RMSE (m) (m)

A1 4 2.13 2.46 - 133.00
B1 - 2 2.88 2.74 -106.40
A2 4 2.69 3.03 102.30
B2 1 1.90 1.85 70.30
A3 2 2.45 2.42 89.40
B3 1 2.38 2.24 65.40
A4 1 2.48 2.58 63.90
B4 1 2.00 1.84 42 .80
A5 8 2.53 7.16 208.50
B85 10* - 250.99 288.20

*Exact-fit degree
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Set 5: the functions of the two sets of data in Set 4 are reversed. That
IS, The control data of Set 4 are used as check points and the check points
become the control data. So the control points take a semi-regular pattern,
whereas the check points take a regular pattern. The results of this set
are shown in Table 5.

All the five steps were repeated for each of the ten cells.

TABLE 5: ACCURACY OF FIT OF SET 5

CELL CONTROL POINTS CHECK PTS. RANGE IN
No. RMSE (m) ELEVATION
DEGREE RMSE (m) (m)

A1 4 2.35 2.43 133.00
B1 2 2.62 3.01 106.40
A2 4 2.86 3.04 102.30
B2 1 1.81 1.95 70.30
A3 2 2.32 2.57 89.40
B3 1 2.23 2.40 65.40
Ad 1 2.56 2.50 63.90
B4 1 1.82 2.01 42.80
A5 -Hx - - 208.50
B5 -Fx - - 288.20

**nderdefined by the data available.
RESULTS:

Accuracy of fit of a digital terrain model is often used to assess the
performance of any terrain msdelifng technique. The accuracy of any

digital terrain model (DTM) in representing the terrain is dependent on
many factors:

(a) accuracy of observed data
(b) pattern of data acquisition
(c) density of control data
(d) mat iematical model
(e) interpolation model
(f)  type of terrain
(g) ﬁl:LribuLicn and density of check points.
So, to ﬂUantzsy the accuracy of fit of a digital terrain model meaningfully
can only be carried out with a corresponding defined set of parameters.
In this project, where the data are processed off-line, the author had
pre-selected some parameters: the sizes of the cells (fixed at 1000 m square);
the accuracy of mathematical surface modelling (i.e. RMSE < 3 m in this
case); the patter ﬁ of data acquisition is semi-regular; and terrain modelling
15 by Chebyshev polynomials. The density of data parameter is variable.

A degree of fit is allowed to float to find its own level of best-fit; and
the terrain intey Dolut on is carried out with the Chebyshev polynomial
coefficients. It remains to test whether the density of the control data

affects
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(1) degree of fit,
(2) accuracy of the fitted model.
The latter was testedéat (a) data points, and (b) check points.

The assessment of the results is based on how accurately the reduced density
data can represent the terrain. This is judged on the degree of fit and
on the value of the RMSE.

Theoretically, the accuracy of fit at the check points should be as good
as that at the control points. From the work done (of which this report
is just a part), it was shown conclusively that the accuracy of fit at the
check points is even better than that at the control points if the degree
of fit is less than half the number of control data points in X or Y
(assumed equal).

That is

1
ki:ﬂ/”

where k is the degree of fit and N is the total number of control data
points in a cell. The results in Tables 2, 4 and 5 are a further testimony
of this statement.

The results of Table 3 do not quite conform to this theory. An explanation
to this non-conformity is that in Set 3, some check points are extrapolated
so lowering the accuracy of the results.

In general, if the degree of fit is higher than half the number of data
points in X or Y, the accuracy of fit is bound to be poor. Needless to
say, exact-fit terrain modelling should be discouraged where possible, as
the errors are indeterminate. Values of k (degree of fit) higher than the
number of data points in X or Y should never be used in surface modelling
as the error values start to oscillate arbitrarily. .

Another factor brought out in this project is that the degree of fit,

k, is quite stable with change of density of data so long as Kk remains
equal to or less than the number of data points in X or Y. The degrees
of fit for cells A1 to B4 in Tables 1 to 5 have remained unchanged while
the densities changed considerably. -

CONCLUSION:

Terrain approximation by a double Chebyshev polynomial is an ideal way of
representing relief in a functional form. The advantages of this technique
are apparent in projects where large cell sizes are involved, and also where
large numbers of data are acquired along parallel profiles to fit a
mathematical surface of high orders. Such a surface would be a general
purpose surface from which heights could be derived by interpolation along,
say, a defined alignment and at a required density.

The problem of this methodology, however, is in assessing the accuracy

of the results so obtained. One method of predicting the accuracy is based
on the degree of fit and the number of control data available. The accuracy
of fit is also further improved by overlapping data along the common
boundaries of the adjacent cells (Segu, 1984). This solves the problem

of cracks across the boundaries.
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Another problem to this technique, not tackled explicitly in this paper,
is that of density of data versus accuracy of fit. Density is a function
of type of terrain and of accuracy of the DEM.

When the density factor has been resclved, this technique of approximating
terrain elevation by polynomial digital elevation models can meet a lot

of demand.
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