The Ordering of Ordinary Moiré Fringes by Photometric Analysis

Ding Xinhong' and J. R. Pekelsky

Division of Physics
National Research Council of Canada
Ottawa, Canada. K1A OR6

Abstract

Ordinary moiré is characterized by a fixed pattern of fringes that are symmetric with respect to
the sign of the surface gradient. One cannot distinguish from such fringes alone whether a fringe
(contour) lies above or below its neighbour. Known as the “hill-or-valley” dilemma, this ambiguity
has been cited as the principal weakness of ordinary moiré topograms. The ‘up’ or ‘down’ surface
orientation possiblities generally result in sufficiently different surface reflectance such that only one
is consistent with the values measured in the topogram. The photometric model used to predict
the expected surface brightness is based upon the relative position of the source, the object surface
and the camera, as well as the local surface reflectance properties. The theoretical and practical
constraints of this method are discussed, and analyzed topograms of test objects and human subjects
serve to illustrate the principle of photometric fringe ordering.

1. Introduction

Moiré fringes are produced by using the moiré effect on the surface of an object. Under suitable
conditions, these fringes can be designed to represent the contours of the surface from which one can
derive 3-D information of the object. One of the basic unsolved problems in moiré fringe analysis
is the ordering of ordinary moiré fringes. Ordinary moiré fringes are those which are both fixed-
encoded and grade-symmetric (Pekelsky, 1985). One cannot distinguish from such fringes alone
whether a fringe (contour) lies above or below its neighbour. This ambiguity has been cited as the
principal weakness of ordinary moiré topograms. Hybrid moiré techniques circumvent this issue in
various fashions (Pekelsky, 1985), but motivated by the inherent simplicity of the ordinary moiré
method and its potentially broad range of application, we have sought a general solution to the
problem. The approach described here is related to the so-called shape-from-shading technique in
computer vision, which has inspired extensive works during recent years (Horn, 1975).

In the shape-from-shading technique, the main purpose is to derive 3-D information from the
2-D image. The basic idea in this technique is to use photometric modeling to connect the image
intensity with the surface orientation of the object so that it is possible to derive a consistent net
of 3-D surface coordinates from a 2-D distribution of image intensities. The general approach in
this method combines an image formation model and a reflectance function (plus some smoothness
constraints) for the surface to select the object’s shape from an infinite set of possibilities (Ikeuchi
and Horn, 1981). Moiré fringe ordering is a 2-D to 3-D problem of a much simpler class: a great
deal of topographic information is known a priori in that the projections of the surface contours
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(the moiré fringes) are known and thus the set of shapes from which to choose is quite small. It
is this reduction from a continuum to a few discrete choices that suggest it may be possible to
order ordinary moiré fringes by using photometric analysis, as was first proposed in an earlier article
(Pekelsky, 1984). In this study we continue to use the principles of central projection geometry and
a simple reflectance function to predict the reflectance value at given point on a contour for each
valid fringe order relationship and to then choose that order relationship which produces the least
squared error between the measured reflectance value and the predicted reflectance value.

In Section 2 we describe the moiré image formation geometry for our case, and define the scope
of the fringe ordering problem. In Section 3 we present the photometric model used in this paper
and the concept of ordering the fringes using photometric knowledge. The evaluation of the local
surface normal is central to our analysis, and in Section 4 we develop an algorithm to estimate the
surface normal at given point. In Section 5 we describe the basic steps of our fringe ordering method
and in Section 6 some preliminary experiment results are presented.

2. Moiré Image Formation Geometry and Fringe Ordering

Figure 1 illustrates the moiré image formation geometry, which can be recognized as a classical two-
projection-center photogrammetric arrangement. We use (X,Y,Z) to denote the 3-D Cartesian
coordinate system, where the (X,Y) plane is the grid plane of the moiré instrument and consists
of a frame supporting parallel strings separated by a distance d from one another. In front of the
grid plane there is a light source at the first projection center, with coordinate (0,h,1). The light
shines through the strings, and onto an object placed behind the grid plane, thus encoding it with
stripes of light characterizing the position of that projection center. The Z-axis points to the viewer
(camera) position at the second projection center, which has coordinate (0,0,1). The scene thus
viewed by the camera consists of the grid pattern and the (distorted but similar) projected stripe
pattern superimposed to form the “moiré”, which is recorded on film in the (U, V) plane.

Figure 1. The Moiré Geometry

In a subsequent step, a scanner is used to transform this moiré topogram into a digital image
in the (P, Q) image plane, and the topographic contours are delineated (automatically or by hand)
by tracing the loci of moiré fringe intensity extrema (the bright and/or dark moiré fringes) in the
image plane. These loci are indeed fringe-encoded contours by virtue of moiré geometry used (Van
Wijk, 1980).
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Let F(t) = (p(t).q(t)) and G(1) = (z(t.0),y(t.0)) be the parametric equation representations of
the moiré fringes on the (P.Q) and (X.Y) planes respectively. Let C(t,n) = (z(t,n),y(t,n),z(n))
be the corresponding parametric equation representation of the contour in the (X,Y,Z) space,
where t is the curve parameter and 0 < n < h/d is the fringe number, an index for the contour plane
(n = 0 corresponds to the grid plane). Then:

z(t,0) = a11p(t) + ar2q(t) + a3, {1a)
y(t,0) = az1p(t) + az2q(t) + azs, (1b)
z(t,n) = (1- d”f +)a(1,0), (2a)
en) = (1 T yy(n0) ()

2(n) = n;‘flf - (3)

Equation 1 is the affine transformation for a point (p,q) in the image plane to a point (zg4,yg) in
the grid plane, and coefficients a;; are determined by image registration using known control points.
Equation 2 provides a central projection into object space with scale corrections provided by Eq. 3,
the moiré fringe elevation formula. Equations 1-3 map the plane curve (a moiré fringe) in the (P, Q)
image plane to the corresponding space curve (a surface contour) in the (X,Y,Z) object space.

Consider a moiré topogram with M bright ! fringes Fy, Fy, ..., Fa. Let ny,ng,...,na be their
corresponding fringe numbers and Cy,Cs,,...,Cps are the corresponding contours of these fringes.
Then the fringe ordering problem can be stated as: given M fringes Fy, Fy,..., Fy, determine
whether contour C; is at a lower, equal or higher elevation than contour C; foreachi,j =1,2,...,M.
Since the contour elevation z(n) is a monotonic function of the fringe number n (Eq. 3), therefore the
moiré fringe ordering problem can be equivalently stated as: determine for M fringes Fy, Fs, ..., Fum
whether n; < n;, nj = n; or n; > n,; for each 7,5 = 1,2,...,M. For the convenience of the
subsequent discussions we use n;Qn; to denote an order relationship between fringes F; and F;,
where (1 € {<, =, >} is an order symbol.

Without any loss of generality, it is sufficient to determine the relationship only between neigh-
bouring fringes. If F; and F; are two neighbouring fringes then according to the axiomatic definition
of a contour, their fringe numbers can differ by at most one contour interval, i.e.

n,—1, ifQis < ;
n; = { n;, ifQis = ; (4)
n;+1, ifQis >
Let F denote the dark fringe that lies between F; and F; and m denote its fringe number. Clearly,
F must be either a half-interval above or below F;, and it follows that

ni—1/2, ifQis < ;
m={n;=1/2, ifQis = ; (5)
n;+1/2, ifis >

Note that when F; and F; are at the same elevation, m will have two possible values and thus there
are four cases of the n;, n; and m combinations to consider.

1 Alternately, we could use the dark fringes in this discussion, indeed we use them in our tests.
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3. The Photometric Model

The possibility of using photometric knowledge to solve the fringe ordering problem is founded on
the premise that the image brightness contains 3-D information. In order to use this information to
determine the order relations between neighbouring fringes, we first need a photometric model and
a reflectance function that will allow image brightness to be related directly to surface orientation.
We must then derive a way that can relate the orientation to the order relationship {} between two
neighbouring fringes. The simplest photometric situation is that of a single point-source as shown
in Fig. 2, where the geometry of the reflected light is governed by three vectors: the illumination
direction L, the surface normal N and the viewer’s direction V (Pentland, 1984). If we further
assume a Lambert (i.e. purely diffuse) surface, then the reflectance funtion at any given point on
the surface can be written as:

(V- L)

r2

(V-1)

I =pk 2

(6)

where [ is the reflectance value, p is the albedo of the surface, A is the nominal intensity of the light
source, r is the distance to the light source and N - L is the inner product. For simplicity we use
Io as a single parameter to replace p) in the formula. This is a model for a purely diffuse surface
under finite-distance single-point illumination.

= I

light normal

26 N

0,

1
<K
viewer

Figure 2. The Geometry Figure 3. The Determination
of the Photometric Model of the Surface Normal

For each different order relationship n;{In; between two neighbouring fringes, the corresponding
contours on the surface of the object will be at different elevations due to the different n;, n;
and m value combinations (Egs. 4-5). This specifies different surface orientations that will, in
general, produce different reflectance values according to the photometric model. By comparing
these reflectance values with the image brightness we would expect that only the reflectance value
produced due to the correct order relationship assumption will be most consistent with the image
brightness. This is the underlying principle of the photometric ordering of moiré fringes.

To use this photometric model we must first obtain the model parameter I5. In general, at
different points of the surface I will take different values. But when two points are close enough
we would expect that the change in Iy is small. Therefore we begin from a point P; where the
value (N - L)/r? is known and simply divide this value to the imge brightness to obtain the model
parameter I p,. This parameter is then applied to a nearby point P, to calculate the reflectance
value there for different surface orientation cases and to carry out the fringe ordering analysis. Once
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the order relationship near P, has been determined, the correct orientation there will be used to
obtain a model parameter Iy p, and this parameter will be used for the next nearby point, and so

forth.

4. The Determination of the Surface Normal

One of the key problems in using the photometric model to estimate the reflectance values at a given
point is the estimation of the surface normal at that point. In this section we develop an algorithm
which can solve this problem for our case.

Referring to Fig. 3, let F;(t) and F;(t) be the parametric equation representations for the two
neighbouring bright fringes F; and F; on the (P, Q) image plane and F(t) = (f](t),fz (t)) be the
parametric equation representation of dark fringe F between F; and F;. Let A be a given point
on F(t) and B the corresponding point on the surface of the object. Through point A is drawn a
straight line segment L(s) = (I;(s),l2(s)) which is orthogonal to the tangent vector of F(t) at 4 and
intersects F;(t), F;(t) at points A;, A, respectively. We use B; and B; to denote the corresponding
points on the surface for A, and A;. Let n;, n; and m be the fringe numbers of F;, Fj and F
respectively, then from Egs. 4-5, for each given order relationship between F; and Fj, n;, n; and m
take different values. Based on these values and the Egs. 1-3, we can map the plane curves F(t)
and L(t) to corresponding surface curves Cq q(t) and Cp q(s), where 1 indicates that these curves
are order relationship dependent. According to Egs. 1-3, C; o can be determined as:

Cialt) = ($1,Q(t),y1,n(t),Zl,n(t)),
zy,0(t) = (1 - m;nii h)(aufl(t) + a2 fa(t) + ars),
m 7
yi,a(t) = (1- mdiih)(021f1(t)+022f2(t)+023), )
mdl
za(t) = md—h’

To determine C; q(s) we interpolate the function using the three known points By, B and B;. Since
L(s) is a straight line, the components of C3 o(s) in the X,Y-axes directions are linear functions of
s. As to the component in the Z-axis direction, we simply use a quadratic function to interpolate
it. Therefore we have

C2,0(s) = ((z2,0(s),¥2,0(s), 22,0(9)),
z2,0(s) = (a1,08 + B1,a),
y2,0(s) = (2,08 + B2,0),

z2.0(s) = (a982 + bgs + cn),

(8)

where the coefficients a1, q, 81,0, @2,0,82,0,a0,bq, cq are order relationship dependent, and can be
determined from the components of B;, B and Bs.

The local surface normal at point B is now simply the vector product of two tangent vectors
C},a(t) and Cj o(s) at that point (the corresponding curve parameters at this point are t = to,s =
So):

oo = C3.a(s0) x Ci qlto)
TG q(s0) X Cf o(to)]
where / represents the derivative with respect to the parameter. Note that the surface normal Np g

depends on both the order symbol (1 for the two neighbouring fringes F;(¢) and F,(t) as well as the
corresponding point B on the contour.

(9)
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Figure 4. Block Diagram for Moiré Fringe Ordering Algorithm

5. The Fringe Ordering Algorithm

Based on the previous discussion regarding moiré image formation geometry, the photometric model

and the

determination of the surface normal, we now can present an algorithm for moiré fringe

ordering. Assume that fringes F}, F; and F; are a sequence of neighbouring fringes where Fy,, F;
have been ordered, and now we want to determine the order relationship between fringes F;(t) and
Fj(t): n;Qn,. The process is specified below:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Choose a point A on the fringe F(t), where F(t) is the dark fringe between F;(t) and F;(t).

Determine plane curves equations F(t) and L(s), where L(s) connects fringes F;, F and F;
at points A4;, 4 and A, respectively (Fig. 3).

For each order relationship n;{In;, obtain the values n;, n; and m by using Eqgs. 4-5. Based
on these fringe numbers, find the corresponding points B, By and B, of points 4, A; and
Aj. Then map the plane curves F(t) and straight line segment L(s) to the surface curves
Cy,a(t) and C; q(s) by using Egs. 7-8 and calculate the surface normal Ng,a (Eq. 9), the
vector L and the inner product of these two vectors.

Use the known fringes F},, F; to obtain an estimation of the model parameter Iy in a point
near point B and apply this parameter to point B.

Calculate reflectance values fB’Q for each () using the local photometric model (Eq. 6).

For each order symbol (1, calculate the error between the measured image brightness value
Ip a and the estimated reflectance value fB,n and choose the order relationship n;{In,
which produces the least square error. To make this method more reliable we can repeat
the process for several points A;, A,,..., Ay (the corresponding points on the surface
contour are By, By,...,By) on the fringe F(t) and make the final decision based on the
total error. Therefore the order relation will be determined according to the following rule:

By
mi Igm — Ig o)t 10
QE{<}2’>}B§ (I, — Ipq) (10)

Figure 4 illustrates the whole procedure. To start this algorithm an initial model parameter is
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needed. One way to obtain it is by assuming that there are two neighbouring fringes whose fringe
numbers are initially known. This is not a strict assumption because in most moiré topograms a
fiducial string can be arranged to absolutely identify the fringe number of the fringes its shadow
intersects (Takasaki, 1970). Then by using Eq. 6 one can obtain the initial model parameter.

Input |Normalized error for |{Output
fringe | order relationships |fringe
pair [ "<, [n, = n, n; > n, order
Fq:F, n.=16.5
J ' n2=17.5
F,:F: 1.0 2.0 2.2 ns=18.5
Fa:Fs 1.0 2.0 5.6 [na=19.5
Fs:Fa 1.0 6.0 10.6 ns=20.5
Fe: Fs 1.0 19.7 30.1 Me=21.5
F.:Fe 1.0 7.4 11.5 n.=22.5
Fet Fo 1.0 56.2 50.6 Ne=23.5
Fs ' Fs 1.0 30.6 29.9 Ns=24,5

Figure 5. Topogram of Sphere Table 1. Analysis of Sphere Topogram

6. Experimental Results

The method described above was embodied into a program to automatically order a set of ordinary
moiré fringes. The program was written in Fortran 77 and was run on a commercial image analysis
system 2. The moiré topograms used were of a standard test object designed at NRC (Paulun, 1983)
and of a human back from a biomedical application. These topograms were produced using shadow
moiré instruments developed in our section (Van Wijk, 1980).

For a given moiré topogram, we first digitize it using a CCD image scanner to put it into
computer memory. We then trace out the contours using the digital display and interactive software
(an automated tracer is under development as part of a completely automated topogram analysis
package). The contours are stored as a sparse series of turning-points along the curve. A quadratic
spline function is used to reconstruct the plane curves F(t) of each of the so-stored fringe contours
in the set as a continous string of connected pixels in the digital image.

At this stage, software to test the fringe ordering principles described above was invoked. It
searched from each point in straight line normal to the curve to obtain L(s). Using two initially
known fringes as seeds, the program automatically analyzed the rest of the fringes by using the
method discussed in Section 5 and reported the ordering result. Figure 5 and Table 1 show the
moiré topogram for the spherical test object and the ordering result. Figure 6 and Table 2 show a
moiré topogram of a human back and the outcome of that test. In both tests we used Fy, Fy,..., Fyp
to denote the dark fringes and assumed that the fringes F; and F, are initially known to have
fringe number n; = 16.5 and n, = 17.5. Then for each indicated neighbouring-fringe pair, the
error between the image brightness and the estimated reflectance value for each of three possihle
order relationships was calculated. The case which produced the minimum error (normalized) was

?2 An ARIES-1I from DIPIX Systems, Ltd. (Ottawa)
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selected, with the appropriate value of the fringe number assigned so as to be used in the analysis
of subsequent pairs. In both examples, the results are everywhere consistent with the actual shape
of the test objects.

Input |Normalized error for |output
fringe order relationships fringe
pair [n, < n,\n, =n,|n; >n,; order

R n:=16.5
FjiFi n.=17.5
Fs:F: 1.0 12.8 19.1 |ns=18.5
fa i Fs 1.0 5.9 11.1 ns=19.5
Fs :Fa 1.0 2.8 20.3 ns=20.5
Fe 2F+| 17.4 12.1 1.0 ne=16.5
Fs tFs 3.1 3.3 1.0 |n-=17.5
Fs :F>» 2.3 2.2 1.0 e=18.5
Fo :Fs 2.4 2.1 1.0 n»=19.5
Fiet Fs 1.0 13.4 20.1 |[Mme=21.5

Figure 6. Topogram of Human Back Table 2. Analysis of Back Topogram

7. Concluding Remarks

In this paper we described a method to order ordinary moiré fringes based on the known moiré image
formation geometry and a simple photometric model. We presented an algorithm to determine the
surface normal at a point by using the vector product of two tangent vectors of the surface curves
which intersect at that point. We then described the steps in our method and gave the results of
test runs for a standard object and a human back. The normalized errors listed in Tables 2 and 3
clearly show a strong discrimination between the correct case and the other cases. We conclude that
photometric analysis can be used to order ordinary moiré fringes.

These results were from a prototype software development. There are several aspects in this
method which may need further consideration. For example, the photometric model could include
the specular reflection component from the object, instead of assuming a purely diffuse effect. We are
investigating various methods to obtain the surface reflectance values in the presence of the moiré
patterns. Also, there is a need to seek a more robust algorithm for estimating the photometric
model parameter, thereby weakening the constraints on the initial conditions to run the program.
Since this writing, some of these issues have been introduced into a more sophisticated version of
the software, which will be reported elsewhere (Pekelsky and Ding, 1986).
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