CCD-RESEAU-ABTASTUNG - EIN NEUES PRINZIP FÜR DIGITALE BILDERVERARBEITUNG
(CCD-RESEAU-SCANNING - A NEW PRINCIPLE FOR DIGITAL IMAGE PROCESSING)
W. Wester-Ebbinghaus
Institut für Photogrammetrie
Universität Hannover

ABSTRACT

CCD-matrix sensors are available now, they offer a solid state image surface and therefore seem to be useful for photogrammetric applications, but they are too small to achieve sufficient image scale. Using réseau technique, also a large format can be digitally recorded by a CCD-sensor with high precision and low mechanical effort. This principle is suitable for off-line analog-digital conversion and, especially, for on-line digital measurements.

EINLEITUNG

Die seit einigen Jahren verfügbaren Flächensensoren (als Festkörper flächenhaft zusammengefaßte Blöcke von opto-elektrischen Einzelelementen) bieten sich für den Einsatz im photogrammetrischen Abbildungssystem an, in Digital-Wandlern für analoge Bildvorlagen ebenso wie unmittelbar in Aufnahmeaufnahmen.

Die handelsüblichen, für die Fernsehtechnik entwickelten Flächensensoren (CCD-Blöcke) sind jedoch kaum mehr als 100 mm² groß, und es werden auch auf lange Sicht keine Festkörper-Sensoren zur Verfügung stehen, deren Fläche den in der Photogrammetrie üblichen Bildformaten gerecht werden könnte. Große Bildformate lassen sich mit verfügbaren Flächensensoren nur in Teilbildern erfassen, die nachträglich zu einem Gesamtbild zusammenzufügen sind. Dabei stellt die Orientierung der Teilbilder in Abbildungsraum hohe Anforderungen an die optisch-mechanische Stabilität des instrumentellen Aufbaus.


Auf diese Weise läßt sich sowohl sequentielle Bildabtastung als auch flächenhaft simultane Gesamtbilderfassung verwirklichen und dies sowohl für die Digital-Wandlung analoger Bildvorlagen als auch unmittelbar für die digitale Aufnahme.

Nachfolgend sind Vorschläge für die Bildabtastung in Teilbildern zusammenge stellt.

PHOTOGRAFISCHER GERÄTKOMPONENTEN NACH DEM PRINZIP DES RESSEAU-ABTASTERS


Nach Abb. 5 können mehrere Bilder simultan an einem digitalen, automatischen Bildprozeß beteiligt werden, zur Erkennung von signalisierten Punkten und auch zur Erfassung der Objektopographie.
Abb. 1: Digital-Wandler

Abb. 2: Digitales Mono-Bildmesßsystem
Abb. 4: Digitales automatisches Mono-Bildmeßsystem
Abb. 5: Digitaless automatisches Bildmeßsystem mit simultaner Mehrbild-Punkterkennung
Abb. 6: Digitales Mono-Bildaufnahme- und Bildmeßsystem

Abb. 6 zeigt ein digitales Mono-Bildaufnahme- und Bildmeßsystem. Grundsätzlich dem in Abb. 2 dargestellten Prinzip folgend, wird der Flächensensor hinter einer in der Abbildungsebene der Aufnahmekammer angebrachten Reséauplatte geführt.


Für digitale Bilderfassungs- und Bildmeßsysteme nach Abb. 1 bis 5 und für digitale Bildaufnahme- und Bildmeßtechnik nach Abb. 6 und 7 sind mit dem soeben vorgestellten System ROLLEIMETRIC RS bereits instrumentelle Voraussetzungen geschaffen (Luhmann und Wester-Ebbinghaus 1986).
Abb. 7: Digitales Stereo-Bildaufnahme- und Bildmeßsystem
ZUSAMMENFASSUNG

CCD-Sensorblöcke bieten sich wegen der geometrisch fest definierten Bildfläche für die Photogrammetrie an, können jedoch nur sehr kleine Bildflächen erfassen. Durch Einsatz der Räumleutechnik sind bei geringem instrumentellen Aufwand hoch genaue und sichere Möglichkeiten gegeben, um Teilbilder in einem prinzipiell beliebig großen Gesamt-Bildformat zu komponieren.

LITERATUR


Brown, D.C., Fraser, C., 1986: Industrial-Photogrammetry - new developments and recent applications. The Photogrammetric Record.


