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ABSTRACT

The theory of biased estimation in statistics is introduced. The application
of the theory to photogrammetric data reduction is discussed. The weighted least
squares methods with supplemented fictitious weighted direct observations of
additional parameters are found to conform to the principle of biased estimation.
Two of these methods are investigated with experiments in the close-range cases.
It is shown that the two methods can be more accurate, at least safer than both
the least squares self-calibrating method with free additional parameters and the
non-self-calibrating method without additional parameters.

INTRODUCTION

Self-calibration is now widely applied in photogrammetric practice. While it
has been found not to act effectively in all cases. Sometimes it even
deteriorates the final results. That is because self-calibration always enlarges
the variances of the least squares estimators at the same time as it rectifies
their biases. If the biases that have been rectified cannot compensate for the
gains of the variances, deteriorated results will appear. So it is evident that
in order to make self-calibration more effective Dboth variance and bias must be
considered and their resultant effect minimized. To do so, an important way is
to improve the estimating methods. The theory of biased estimation of the
coefficients in linear regression has developed a kind of estimating methods to
improve the least squares method. The philosophy of the theory is to decline
variance in a beneficial deal at the sacrifice of moderate increase of bias so as
to acquire a minimum mean square error in the final result. The theory developed
rapidly in last decade or more in applied statistics, and has come into
application in some fields. In the following, the theory of biased estimation
will be introduced and its relationship with photogrammetric data reduction be
discussed so that the results of studies in biased estimation will be applied to
photogrammetry. Two estimating methods will be constructed for self-calibration
according to the principle of biased estimation, and then examined with simulated
experiments in close-range photogrammetry.

FUNDAMENTAL PRINCIPLE OF BIASED ESTIMATION

As is known from statistics, a least squares estimator is a minimum variance
unbiased estimator (for the cases with normal distribution). However, in some
cases, especially in self-calibration, the minimum variances that the least
squares estimators possess are still unacceptably large probably since strong
correlations and ill-conditioned coefficient matrices are present. Thus, Some
improvement of the least squares method is necessary in these cases.

Because the least squares estimator is the best of unbiased estimators, +to
improve the least squares estimator, we must resort to biased estimators and seek
the improvement in the sense of mean square error. In applied statistics some
kinds of biased estimators were developed for the purpose. The ridge estimators
and the generalized ridge estimators are among them.

For the linear model

- 49 -



LzAX"'Vr ) (1)

the ridge estimator of X, marked by E, is defined by the following formula

X(k) = (N + kI ) A'L (2)
where N=A'A and 0 sk <00 , L:(nx1), X:(m*1).
The bias, variance and mean square error of X(k) are as follows:
Bias(RF(k)) = B(F(K) -x=( ( I+ -1)x , (3)
Var(X(k)) = 62(N + kIXN (N + eI, (4)
Mse(X(k)) = B( (X(k) - x)"(X(k)_~ X))
= tr(Var(¥)) + (Bias(¥))'(Bias(¥X)) . (5)

It has been proved that the variance term of the last formula is a monotone
decreasing function of k , and that the bias term is a monotone increasing
function of k . It follows that

if k varies from O 4 to 00 ,
then tr(Var(X)) varies from O tr(N ) to 0 and
(Bias(%))'(Bias(X)) from O to hab G

It has also been proved that if X'X has boundary, then there exists some kg=0
which makes the ridge estlmator X(k) possess a smaller mean square error than the
least squares estimator X, that is

mse(¥(k,)) < Hse(%(0)) = mse(X) . (6)

This property shows that properly choosing k can make the ridge estimator better
in the 8ense of mean square error than the least squares estimator.

Assuming A; to be the ith eigenvalue of N , we obtain a expanded form of
formula (5) in which the relation between k and the Mse(X X(k)) is clearer.

1 A
Mse(X(k)) = 022 A 5 2 + 18X (N + kI )-2X

It can be seen from above that a reasonable choice of k depends on the true
values of the unknowns Jand X . It is evidently impossible to find some k
always making Mse(X(k)) minimum or smaller than Mse(X) whatever true values O and
X take. So, in practice, we can only determine k according to experience or
sample of observations containing the information of ¥ and X . Up to now quite a
few principles and methods of choosing k have been developed in applied statistics.
Who is intereasted can refer to the listed literature (Hocking,1976; Wichern,
1978)., But the effectiveness of each of these methods is not uniform, varying
with the coefficient matrice and the true values of Jand X . None of them is
better than the others in all cases. Therefore, Special procedures of choosing

k aimed at special cases need to be developed to apply ridge estimation
effectively. These remarks also apply to the generalized ridge estimator.

The generalized ridge estimator can be defined as follows:

F(K) = (N +2'K2 WL (8)

where K = diag(kq,ko, »-+,kp) is a diagonal matrix in which the diagonal elements
may be different, and 7 is the orthogonal matrix which makes

ZNZ"—‘ A =diag(/\..hza e, Am) .

Let Y=7ZX , then
"f'g(x) = (A+ & YL (9)

is the generalized estimator of Y . It can be found that the generalized ridge
estimators have included the (simple) ridge estimator as their special case with
all the elements of X being identical. They can decline the mean square errors

further. 1In fact, 2 2
Mse(Xg(K)) = Hse(Ta(K)) 09; Al+ k E (;13; > (10)
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Derivate the right side of above formula to each ki , let it equal to zero and
solve it. Then it follows that

k= 0%/ y? (i =1,2,°°°,m) . (11)

These k3 will make the Mse(ié(K)) and Mse(fg(K)) minimum. Generally one yyi is
different from another, so the best k; given by formula{11) are not the same.

Therefore, theoretically, generalized ridge estimators can reach smaller mean

square errors than simple ridge estimators.

On ridge estimation (simple and generalized), the following remarks can also
be given , which will be helpful for us to understand this new estimation.

When k¥ or K is independent of the sample, the ridge estimator is the linear
function of the sample, and called linear estimator. Because in application k
or K is always determined from the sample, the ridge estimator in practice
essentially belongs to nonlinear estimators. It is known from statistics that
if there exists some estimator uniformly better than the least squares estimator,
it must be nonlinear.

The ridge estimator X(K) is equivalent to the weighted least squares
estimator obtained by supplemegting unknowng!' fictitious direct observations of
values 0 and variance matrix O°k~!1® 1In fact, in so doing, the augmented error
equations become

L A V1 I 0
( = ( )X + and weight matrix:
0 I Vg 0 K

the normal equations become
(aA'a+x) X =4, .

Then X*= X(X) . X(K) can also be acquired by using the constrained least square
method in which the constraint is X'X =< d2, where d is related to K . If some
priori statistical information like X~N(0, 02K ) is assumed, X(X) can again be
obtained by applying the maximum posteriori estimation or Bayess principle. The
three different ways lead to the same ridge estimator. However they have all in
all different meanings, systems of research and results of study.

When ki is the infinite, the ridge estimation is equivalent to deleting the
unknown corresponding to the kg from the model, teking zero as its estimator and
then conducting least squares estimation. And when ks is zero, the ridge
estimator of the corresponding unknown degenerates into the least squares
estimator (for yi). These show that ridge estimation can play the role of
selecting parameters, furthermore can treat the two decisions of accepting oxr
rejecting parameters as a continuous process and make a compromise. Therefore,
theoretically, ridge estimation is more capable of improving the quality of the
estimators of unknowns than parameter selection approaches.

Unfortunately, none of the ridge estimators proposed so far can improve the
least squares estimator uniformly. Where a ridge estimator can be better than
the least squares estimator is a complicated problem on which the present
theoretic research work is not yet satisfactory. But it should be realized that
an important aspect of the application of ridge estimation lies in the ingenious
combination of the principles with the concrete practices.

The application ofself-calibration has brought phétogrammetric data
reduction a series of new problems, such as the determination of error models,
the selection of parameters and the treatment of strong correlation. These
problems essentially belong among those how to consider both the varianice and the
bias so as to reach the best actual quality, for which the biased estimation was
originally proposed. Now the theory of biased estimation has become a special
theory, developed a series of methods and come into application in some fields.
Therefore, it can be expected that applying the principle and the methods of
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biased estimation to photogrammetric data reduction will be beneficial.

ON THE APPLICATION OF BIASED ESTIMATION TO PHOTOGRAMMETRIC DATA REDUCTION

The theory of biased estimation was developed for linear models. While the
models encountered in photogrammetry are nonlinear., It is therefore needed to
deal with the problems of the relation and transference between linear models and
nonlinear models before applying the biased estimation to photogrammetry. For
nonlinear models, the usual principle for the estimation of their unknowns is
also the least squares principle. That is, for the following nonlinear model

L =F(X) +Vy , (14)
to find the i as the estimator of X making

(L - F(XN"(L - P(X)) = min . (15)
where F o= (f1,f5,---,fn)" , every f; (i=1,---,n) is the nonlinear function

of X. The ususl method for acquiring this estimator is the Gauss-Newton method
which is currently used in photogrammetry. As we know, it is actually the
recursive application of the linear least squares method. It is this link
between Gauss-Newton method and linear least squares method that reference will
be made to in the following.

Although nonlinear least squares estimators are widely used in practice, it
is not yet clear how their statistical properties are. No general conclusion has
been drawn about that. Generally speaking, the least squares estimators of
nonlinear parameters do not necessarily possess such properties as being unbiased
or efficient or so like linear least squares estimators. Their statistical
properties vary with various models. Because the solution of nonlinear least
squares estimation is an iterative and approximate one, to investigate its
statistical properties is quite difficult. For this reason, when using the
nonlinear least squares estimators, people always consider the problems relevant
to the statistical properties approximately as if they were with the linear
cases{see Afifi,1979). This practice has become conventional and granted. In
the consideration of applying the biased estimation to the nonlinear
photogrammetric problems, the similar approximation may be made. Stress may be
put on proposing new.eshimating methods and testing them by experiments.

In model (14), if the nonlinear 1east squares method is adopted to estimate
X, and the initial approximate values of X, marked by Xo , is sufficiently close
to their least squaressolutions, then the estimator can be expressed
approximately as the linear function of the observation L as follows:

(AOAO) A (L -~ F(Xy)) + X, (16)
in which
b= ST lxery -

Assume Vy in model (14) to follow N(O,OQI) , then the variance of X will
approximately be

A -
Var(X) = 02(a4a,)"" (17)
(this is sometimes very coarse). This shows that the variance of X has much to
do with the condltion of matrix Ay . If there is some strong correlation in Ko »

the eigenvalues of AuA, will be very small, and that enlarges the tr(Var(X))
severely. Therefore, according to the thoughts of biased estimation, a natural
way to improve the least squares estimator is to take the estimator of the
following form so as to shrink the variance of the estimator.

X(K) = (AOAO + K) Ao(Lw— F(Xo)) + Xo (18)
If X is assumed to be unbiased, then X is biased. It is thus needed to choose
some proper K to minimize the mean square error of the estimator as in linear
cases. So far it can be seen that if it has been assumed that the nonlinear

least squares estimator is unbiased, its variance as formula (17) and X, close
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enough, then the problem of improving nonlinear least squares estimators has no
difference from the same problem in linear cases.

Many results of theoretic studies on biased estimation are with the
transformated unknowns Y as in formula (9), not the original X . However in
photogrammetric practice, such transformation is of great amount of computation.
Therefore it is still difficult at present to apply those results of theoretic
studies directly. But some alteration may be made, such as, to use the following
biased estimator instead of that given by formula (8):

XK) = (B + & yA'n . (19)

This estimator can also possess smaller variance than the leastsguares estimator.

THE METHODS, EXPERIMENTS AND RESULTS

It is known from above two Sections that the nonlinear weighted least
squares methods with supplemented fictitious weighted zero observations of the
unknowns conform to the principle of biased estimation. So this kind of methods
can be used to improve the least squares method in photogrammetry. In this study
two methods of this kind were constructed for self-calibration in close-range
photogrammetry and examined by experiments. They are featured below by their
weight functions, or biasing terms.

For the Method 1 the weight function is

k+l o k k k 1 o _ C e
By, = 0°(1-Dg, a5, )/si with Pg, =0 » 8;=0 (i=1,°:,mg) (20)

where O 1is the first estimator of the reference variance,
kk is the ordinal number of estimation,
8: 18 the kth estimator of sy, the additional parameter,

pf is the weight for the kth estimation,
k . -
qj is the diagonal element of (A&Ak+ Py ) 1corresponding to 8y , in which

4, is calculated with the kth estimators, Py is the diagonal weight matrix of
unkowns in which the diagonal elements except those corresponding to the
additional parameters s are zero all the time. This method is executed by
recursively determining the weights by formula(20) and repeatedly conducting the
nonlinear weighted least squares adjustment with the current weights each time
until some k for which each s% has little difference from its last value s§—1.
The Method2 differs from the Methodl only in that it takes the following weight
function:

K+ k41 o5 K ko, 38 k2 . .
Py =P =093 (-pgag )/ S (507 (i=1,cemg) o (21)

J=1 j=:1
where the symbols have the same meanings as those in the Method1. AS another
alteration, the two methods apply biasing terms only to the additional parameter
part of the unknowns. That is based on the consideration that the range of
values of additional parameters in selfecalibration is very limited to which the
methods can adapt themselves, and that the extent of approximation of the initial
values of the main unknowns is changeable for the methods of producing the
initial values are full of variety, so that a method with applying biasing terms
to the main unknowns could lose its adaptability. The similar methods were once
proposed and used in aerotriangulation before. But special studies on them and
experiments aimed at concrete close-range cases are still not sufficient.

To examine the effectiveness of the two methods in close-range
photogrammetry, a set of simulated experiments were specially made. They are
described as follows. All are simulated by a computer.

Cameras with f=58 mm and formats being 24*%6 ym? are used for photographing.
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Stereo pairs of photographs are taken with nearly 100% overlap and 20% depth of
field. FEighty object points are normally distributed within the drawn field.
The control data are provided by designating certain number of true coordinates
values from the object points. The number has three options of 21, 12 and 6.
The observations of image coordinates are obtained by damaging the true image
coordinates with artificial errors. The random errors follow the normal
distribution N(0, 02), in which O has the choice of 1m, 3um, 9p and 22u. The
systematic errors are produced according to the classical physical model:

Xg= xo+(x»x0)(k1r2+k2r4+4%¢6)+

+p4(r242(x-%,)2)+2p, (x-%, ) (y-y 5 ) +A(y-y4) (222)

yS= y0+( =50 ) ( k1 I‘2+k21'4+k3r6 ) +
40, (1242 (y-y )2 ) 4204 (x-x,) (y=¥, )+B(y-¥,) (22D)
in which x and y are image coordinates, re=(x-%y)%+(¥y-¥5)° and the other symbols

are parameters which are given three sets of values in setting conditions and
taken as additional unknown parameters in adjustments.

s O I DO T
! Hf%m 162 15%@2 ﬂf%ﬁ415856 1§%ﬁ4 1‘Emnf'1 163 153
o L 0.1 0.1 0.3 0.1 0.2 -0.2 C.2 ~0.1 0.4
R -0.1 -0, 1 0.4 -0, 1 0.3 0.4 -0, 1 0.5 Q.1
D L 10 10 3 1 -1 2 -2 5 -10
R 5 -10 4 1 -2 1 2 -12 8
" L 100 100 0.3 0.1 ~-0,.1 0.2 -0,2 50 -10
R 50 ~100 0.4 0,1 -0,2 0.1 0.2 =12 8

Table 1: Three Sets of Simulated Systematic Errors

To compare the two methods with the least squares self-calibrating method with
free additional parameters and the non-self-calibrating method without additional
parameters, all the four methods have been executed to every case examined. The
root mean square of the real errors of position of all object points has been
taken as the criterion for comparison.

The results of the experiments are listed in table2--5. It is shown by the
results that:

1. Method1 and Method2 can acquire more accurate results than both the least
squares self-calibrating method with free additional parameters and the
non-self-calibrating method without additional parameters, at least, if not
in some cases, still be closer to the better of them. This might be true
for any number of additional parameters. These two methods can thus be said
to be safe and robust in respect that this effect of the two methods to
systematic errors is much like that of the "robust method" to gross errors
(see Kubik,1984).

2. In the cases of large random errors and variance factors and small syStematic
errors, the two methods are much better than the least squares method which
is now at a disadvantage. While, in the contrary cases in which the least
squares method turns superior, the two methods have little improvement and
sometimes are even not as good as the least squares method. That 1s shown
in table2,%and4.

3. When the number of control data decreases, the least squares method becomes
worse, and the two methods improve it a lot. This means that using the two
methods can save control data. That is shown in table4.

4. The two methods have almost the same trend. The cases in which Method2 is
better than Methodl are in the majority. But in the cases where the values
of systematic error parameters have great disparity like set H, Methodl is
considerably superior to Method2 as shown in tableb.
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CONCLUDING REMARKS

After introducing the theory of biased estimation, we have found that the
theory has close relation with many problems and methods in photogrammetry. The
weighted least squares method with supplemented fictitious weighted direct
observations of additional parameters just conform to the principle of biased
estimation. By simulated experiments in close-range photogrammetry, two methods
of this kind have been proved to be more accurate , at least safer than the least
squares methods with or without additional parameters. But the minute behaviour
of these methods has not yet been discerned and further research in this
direction is required. The theory of biased estimation has a wealth of content,
only a little part of which has been introduced here. The work of introducing
and linking in the paper has been done in the expectation that the theory of
biased estimation will play its special directive role in photogrammetric data
reduction.
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LS, Without AP LS with AP Method 1 Method 2
Case E‘ RMSWH RMSPEM RMSVH RMSPEu RMSV}1 RMSPEll RIP, RMSY“ RMSPEu RIE,
a 1.0 5,23 9.76  t.21 3,59 1.18 2,40 433 1.13  3.34 o+ 7
3.0 5,99 10,76 3,37 10.42 3,46 7,19 431 3,42 6.23 +40
9.0 10.93% 19.12 9.98 31.13 10.3%34  19.55 +37 10.40 18.05  +42
22.0 24,46 43,30 24,03 104.28 25,47 46,58 455 25,22 45,45 456
b 1.0 4,22  12.12 1.23  2.45 1.19 2,27  + 7 1.19 2,02 418
3,0 5,09  12.64  3.47 7,29 3,60 6.28 414 3.62 5,29 419
9.0 10.39 19,68 10.48 21.94 10,85 18.77 +14 10.75 17.68  +19
22.0 24,14 43,05 25,75 54,65 26,35 44,65 418 26,28 43,35 421
c 1.0  4.02 15.65 1.81 6.45 1.22 3.57 +45  1.21 2,49 462
3,0 5,04 15,0 4,60 17.90 3,64 7.9 +56 3,62 6,95 461
9.0 10.64 20,08 10.38 45,73  10.91 21.42  +5% 10.86 20.86  +54
22,0 24,73 44,58 25,66 101.82 26,81  46.94 454 26,62 50,03 451
d 1.0  2.23 22,16  1.1%  7.17 1.13 6.25 413 1.16 .70 421
2,0 4,01 24,02 3,36 21,44 3.48 16,66  +22  3.48 15.71  +27
9.0 10,46 45,98 10.05 64,06 10.49 0.17 +22 10.48 48,30 425
22,0 24.89 109,98 24.59 156,87 25,57 121.03 4273 25,63 120.85 423

Table 2: Comparison in the Cases with Small Systematic Errors Set G
RM3V: the Square Root of V'V/(n—m), n & m are numbers of observations & unknowns.

RMSPE: the root-mean-square of real position errors.
RIP: the relative improvement percentage to the RMSPE for "LS with AP'.

- 55 -



Case Systematic 13 yith AP Method 1 Method 2

Error
0=9n Set RMSPEp RMSPEy RIP ¢ RMSPE;; RIP 4
a IG 31.13 19.55 +37 18,05 +42
D 29.99 26.00 +173 23.83 +21
b IG 21.94 18.77 +14 17.68 +19
D 22.46 20.62 + 8 21.01 + 6
c ’G 45.73 21.42 +53 20.86 +54
D 43,65 %1.55 +28 26.18 +40
3 IG 64.06 50.17 +22 48,30 +25
D 61.59 50.90 +17 49,23 +20

Table 3: Comparison under Different Systematic Errors (Set G and Set D)

. Control LS with AP Method 1 Method 2
ase
Data RMSPE RMSPE; RIP % RMSPE, RIP %
- ;”g 21 7.29 6.28  +14 5.92 419
: 12 17.90 7.93 456 6.95  +61
AP: G
geo2.0 |21 54.65 44,65 418 43,35 421
e 12 101.82 46.94  +54 50.03 451
o= 3.0 |2 7.66 9.78 -28 7.88 -3
NP 19,02 12,69 433 9.36 451
AP: D
gez.0 |21 54.20 47.40 413 48.71  +10
P 96.48 79.38  +18 68.34  +29
21 10.42 7.19 431 6.23  +40
AP: G, O= 3.0 |12 50.31 12,23 +76 9.92 480
6 61.T1 8.94  +86 9.04 +85

Table 4: Comparison under Different Numbers of Redundant Control Coordinates

c L3 with AP Method 1 Method 2
ase
RMSPEp_ RMSPEn RIP % RMBPE}I RIP %
a 3.97 2.74 +31 3,98 - 0.3
b 11.08 8.20 +26 11.15 - 0,6
c 34,56 26.73 +273 35.79 - 4
a 88.53 63%.1% +29 66.66 +25
e T2.64 58,00 +20 68.96 + 5
f 19.34 16.48 +15 18.81 + 3
g 23,04 14.49 +37 21.66 + 6

Table 5: Comparison of Method 1 with Method 2 under Set H
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