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ABSTRACT

The Problems including the determination of systematic error models, the
selection of additional parameters and the treatment of approximate correlation
are studied more theoretically, which must be considered in the application of
self-calibration., It is pointed out that self-calibration always enlarges the
variances of the estimators of the main unknowns although it may rectify their
biases, and that the mean square error reflacting both the variance and the bias
should be adopted as the measure of quality of estimators and be minimized in
order to attain the best effect of self-calibration. The proposition is proved
that the reversible linear transformation of the systematic error models has no
effect on the least squares estimators of the main unknowns. A formulated
criterion is given for the selection of parameters, based on which a new proposal
is made for the statistical test as a tool of selecting additional parameters.
It is also pointed out that the approximate correlation among unknowns in self-
calibration not only causes difficulty in numerical solution but also depresses
the quality of estimators, and that the key to treating it is to improve the
estimating method.

INTRODUCTION

After many years of study and test, the technique of self-calibration has
been widely used in photogrammetric practice. It has brought a considerable
improvement to the quality of photogrammetric results due to its function in
compensating the systematic errors. Nevertheless, it should be admitted that
quite a few problems with self-calibration have not yet been solved completely.
Self-calibration is not always effective . Sometimes it even deteriorates the
quality of results. So far we have known little about the regularity of function
of self-calibration, and cannot be sure about whether it is beneficial in a
particular case or not. Statements and realizations on some questions are still
not identical. 1In the past, researches were made mainly by proposing some method
or approach based on experience or intuition and then testifying it by experiments,
but seldom into the theoretical basis., Now it is time for an overall theoretical
study on self-calibration in order to provide a systematic and reliable
theoretical basis for the effective and safe application of self-calibration, The
theoretical study is also required for the perfection of the theory itself of
self-calibration. In this paper, some problems including the determination of
systematic error models, the selection of additional parameters and the treatment
of approximate correlation are studied more theoretically, which must be
considered in the application of self-calibration. Some new viewpoints are put
forward,

SEEKING MINIMUM MEAN SQUARE ERROR

As is well known, direct or indirect observations are all random variables.
So they have such characteristic quantities of probability distribution as the
expectation and the variance from statistics.  Their errors appear only when they
are used to estimate unknown quantities. If X denotes the observation vector and
X denotes the true value vector of the quantities to be estimated by X, then the
true error vector of the estimation denoted by e is

e = i - X .
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e is also a random vector. The sum of all the second moments of gts elements, i.e.
the statistical mean of e'e , is called the mean square error of X estimating X
and denoted by Mse in regression analysis. That is

Mse(X) = B(e'e) = B((¥-x)'(¥-x)) (1)

where E(°¢) denotes an expectation. In the case of single element vectors, the Mse
is evident to be able to measure the proximity of the estimator to the estimated
quantity the accuracy, So can be used to assess the quality of the estimator,
which was proposed by Gauss (Mikhail,1976). 1In general, this reason also applies
to vectors with more than one elements.

Evolving Eq.(1) with taking account of the statistic definitions of variance
and bias, we have

Mse(X)

it

B((%-EX) "(%-EX)) + B((EX-X)'(EX-X))
tr(Var(%)) + (Bias(¥))'(Bias(X)) , (2)

which shows that the mean square error consists of the variance term and the bias
term. As a rule, it is thought that the variance reflects the random error and
the bias reflects the systematic error. So the mean square error can be
considered as a quality measure that reflects both the random errors and the
systematic errors,and accordingly the real quality of estimators.

]

The variance of a random variable measures the extent to which a group of
values of this random variable concentrate. It is regarded as the measure of
precision of estimators in a lot of literature. Now it can be seen from Eq.(2)
how precision differs from accuracy. The variance is just a part of the mean
square error. Only when the bias is equal to zero is 1t reasonable for the
variance to replace the mean square error to assess the quality of result. A
smaller value of either variance or bias only does not necessarily mean a better
result., In estimation we should strive to minimize the combined effect of bias
and variance, that is , to minimize the mean square error. Especially when
decreasing the variance contradicts decreasing the bias, it is crucial to consider
both the variance and the bias comprehensively in order to procure the best result.

SELF-CALIBRATION DECREASES BIAS BUT INCREASES VARIANCE

When it is required to use a group of observations to estimate some unknown
quantities which are relevant to those observations, we always first establish
based on some ideal the function model which describes their relation and the
stochastical model of the errors, then estimate the unknown quantities according
to the least squares principle. Suppose that L is the observation vector, X is
the vector of unknowns to be estimated and the models are

E(L) = AX , and Var(L) = 0?1 . (3)
Then the vector of least squares(abbreviated LS) estimator of X , denoted by ﬁ, is
$= (A = | (4)
If the models (3) are true, then
B(R) = Wa"B(L) = (a'a)"a'ax = x (5)
Var(R) = N A'Var(L)AN = 697 | (6)
ﬁ is the best linear unbiased estimate (vector) of X. But in practice, there is
always some difference between the actual observations and the assumed ideal
function model. The reason for that can be explained from different standpoints

as the poor fidelity of the model or as the systematic errors in the observations.
Now the true function model may be

B(L) = AX + 7V , %0 (7)

rather than the one in models(3) (the stochastical model remains as that in
models(%) all the time in the context). In this case, for % derived from Eq.(4),
we have
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B(X) = NA'E(L) = NA'(AX4Vs) = X + A"V % X . (8)
Tt shows that X is no longer unbiased at this moment. If Vg is too large, % will
not be acceptable., One way to rectify the bias of X is to refine the function
model by supplementing a term, say H3, to describe the systematic error Vg so that
the refined function model fits the observations, that is, there is

E(L) = AX + HS , (9)

then to execute the least squares method with regarding S as well as X as unknowns.
As a result, the unbiased estimator of X accompanied by that of S is acquired.

For distinguishing from the main unknown parameters in X, the elements of S are
called additional parameters, which are introduced only for rectifying the biases.
Such an approach of compensating systematic errors is referred to as self-
calibration in photogrammetry.

It will be seen from the forthcoming Eg.(l5) and Eg.({4) that self-calibration
can rectify the biases of estimators but always inflates their variances.
Therefore, in order to gain quality from self-calibration, we must take account of
both aspects of variance and bias and take the mean square error as the measure
of quality. The determination of systematic error models, the Selection of
additional parameters, the treatment of approximate correlation and suchlike
measures must all clearly aim at minimizing the mean square error.

ADDITIONAL PARAMETER REVERSIBLE LINEAR TRANSFORMATION HAS NO EFFECT ON MAIN
PARAMETER ESTIMATORS

It is to compensate systematic errors and acquire unbiased estimators of
unknowns that self-calibration is applied. So it is evident that the supplemented
model must be able to describe the systematic errors really, in other words, to
have a high fidelity.

The current methods for the determination of systematic error models can be
classified into two categories. One is to decompose the syStematic errors into a
number of elements to each of which a physical explanation and a describing
submodel can be given, then to compose all the submodels into the systematic error
model, which is known as the physical model. The other method is to use sSome
ideal mathematical formula to fit the total systematic errors without accounting
for the physical factors and the explanation of the parameters. Such models are
named empirical models. So far whether physical models or empirical models should
be adopted has not been reconciled yet. In fact, it is difficult to give a
general answer to that. Experiences in analytical aerotriangulation have shown
that none of the tested models can be superior to the others in all cases.
Therefore, the key seems to be making it clear in which cases a model has a good
description of the systematic error sources and adopting the particular model in
the particular cases.

Once a systematic error model is determinated, its reversible linear
transformation does not affect the least squares estimators of the main unknown
parameters. In fact, if L3 estimation is made according to the following model:

L = AX + HCS + Vg
in which C is a reversible matrix, then the LS estimator X of X is derived fron

% = " (z-mo(c B (T-a A" YEe) o B (-ar A L

VA" (T-H(H (T-a A)ET ' (-2 )L (10)

It is seen from the final expression in Eq.(10) that the LS estimator X of the
main parameter vector X is independent of the transformation matrix C. This fact
suggest us that the form of a model is not significant to self-calibration, and
that in the determination of systematic error models consideration should be given
mainly to the space described by the model and to making a sufficient space
described with as few parameters as possible. In addition, by proper

i
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transformation a model can be changed into an orthogonal or simpler form so as to
faciliate the computation without losing its fidelity.

Some of the existing systematic error models in photogrammetry can be
transformed linearly from one to another. For example, the spherical harmonic
function model containing ten parameters can be transformed linearly to the
complete three degree polynomial model (Schut,1979). From above discussion we
know those models have the same effect in self-calibration . The major difference
is that the models of good orthogonality, such as the spherical harmonic function
model, can make the numerical solution stable and the statistical test of the
parameters convenient. [Many empirical models were proposed for faciliating the
computation and fitting the anomalous systematic errors which cannot be explained.
Hence they can bring less difficulty in numerical solution. But the empirical
models could not fit the several major systematic errors as well as the physical
models. Recently, S.Murai derived the conclusion that the physical models were
superior to the empirical models in fitting the image systematic errors from his
study on comparing nine models including three physical ones in the close-range
photogrammetric cases with nonmetric cameras (Murai,1984). This result might
prove that the physical models possess higher fidelities than the empirical models.
The chief defect of the physical models is likely to be the possible approximate
correlation among their parameters that can make the LS solution unstable or even
fail. But this defect can be overcome by other means, such as, applying linear
transformation to the additional parameters, using the Marquardt method(Marquardt,
1963) or other improved LS methods to realize the LS solution, and for the
convenience of statistical tests, implementing the posteriori orthogonalization
of the additional parameters ( A, Grum,1978), and etc.. For the above reasons,
the empirical models should not be complemented too highly, especially when their
fidelities have not been ensured.

Fidelity mentioned here has not been defined strictly. In the author's
opinion, the fidelity of a model should be measured by the residuals of image
coordinate observations rather than the residuals (or true errors) of the
photogrammetrically determined coordinates of object points. If a systematic
error model, when used in self-calibration, leads to a big drop in the residuals
of image observations, it is thought to be of high fidelity. It is then evident
that adding parameters to a model always gains fidelity and decreases the fitting
errors. DBut it will be seen in the section right below that a model of high
fidelity only dose not necessarily bring a good final result and that some
parameters need to be rejected. Therefore, we should choose such "candidates'" for
systematic error models that can most probably describe the systematic errors and
also contain the fewest additional parameters.

FORMULATED CRITERION FOR ADDITIONAL PARAMETER SELECTION

Since systematic errors are caused by a variety of factors, a mathematical
formula describing the space in which the systematic errors vary always contains
a large number of parameters. However, for a certain realization of
photogrammetry, not all those factors have a great effect, always some have, but
some not. Its reflection on the mathematical model is that some parameters differ
significantly from zero and some approach zero. Then including all the parameters
in self-calibration will increase the amount of computational work not necessarily,
and worse, will inflate the effect of random errors on unknowns' estimators.
Therefore, it is always hoped to reject those additional parameters which have
little effect of compensating systematic errors or even deteriorate the result.

The fact has been testified by a great deal of practice that the self-
calibration including inappropriate additional parameters can deteriorate the
result of estimation. The reason for that has been explained in a popular and
intuitive manner befor. But those explanations are not sufficient to give
instructions for preventing that phenominon. Now we shall analyse the phenominon
in more mathematical terms.
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Suppose that Bq.(9) is the true model and H=(H I, ), S=(3} $). Then the
model for estimation corresponding to Eg.(9) is

L -V = AX + HS = AX + HqSq + HoSp (11)

which is named complete model or true model. And the model with a part of all the
(additional) parameters, say S, , rejected is

L -V =AX + B45¢ , (12)

which is named submodel. Now examine the least squares estimators of the main
unknowns (vector X) obtained respectively by model(11) and model(12).

By model(11), the LS estimator % of X is

% = N—1A'(I - HQééH'QVV)L (13)

A A QA A
in which Qga= (H'Q_H) 'a ( SeSy S‘s*) , Q=TI - ANTA

N A a A
8,8, S8y
The cofactor matrix of i is
Qua= N+ N A HQaaH' AN (14)
S S “gst i
and the bias of ¥ is
. A - A _ =1 1 n 1 _ _
Bias(X) = B(X)=X =N A (I - HQaaH QW)(AX+HS) X=0. {15)

The mean square error of X is then derived from Eq.(2),Eq.(14)and Eq.(15)
as follows:

A
2

Mse(X) = O tr(Qiﬁ) . (16)
And Dby model(12), the LS estimator of X, denoted by i, is

A =11 1

X=N14(I- H1Q§.§‘E1QVV)L, , (1

1 ~1
where ,5,= (HQH) -
The cofactor matrix and the bias of % are respectively
I ] v =1

Qﬁ}a{-— N4+ N A H1Q§‘§'H1AN (18)

. _ 2y o =1 _ [ o _
and Bias(®) = B(X)-x = N A' (T H,Qg8 H,Q ) (AX + H,S + H,S)) - X

=1 1 ]
=N A (I - H1Q§‘§IH1QVV)H282 . {19)

The mean square error of ﬁ is then as follows:
Mse(X) = Uztr(Qi}%) + tr((B(E)-x)(B(K)-x)") . (20)
g;w compare the mean square errors of X end ﬁ by subtracting one from the other,
n
© Mse(X) - Mse(%) = tr( ¥ A" (I - H1Q§‘§‘H;QVV)H2'
(07054, 5,5))-
"HY(T - H1Q§'§lH;QW)'AN"1 ), (21)
in which Qga= (HyQ H,- HyQ H,Qg3HQ H,) -

It follows that if
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2 1

o Qéz's«z—- 8282 >0 (222a)

that is, the left side is a pos8itive definite matrix, then there will be
Mse(X) > Mse(X) .

The inequality (22a) can be proved to be equivalent to the following one:

' :L 22b
SZQszszSZ/ F<1 . (22b)

The above reasoning shows that in the case of the inequality (22) being
satisfied the estimator of the main unknowns X by the true model(11) is inferior
to that by the submodel(12) in which the parameters 82 have been rejected. That is
just the phenominon which is referred to as the overparameterization in
photogrammetric self-calibration, When it is present, rejecting parameters S, will
be beneficial. That is to say, the inequality (22) provides us a formulated
explanation of the overparameterization and a formulated criterion for the
selection of additional parameters.

In addition, it can be discerned from the equation of comparison (21) that the
effectiveness of self-calibration is relative to the ratio of the magnitude of
additional parameters to the reference variance, in the current case, that is the
left side of the inequality (22b), which reflects the"signal to noise ratio®. The
larger the ratio, the more effective the self-calibration, and less effective
otherwise. This property of self-calibration was once derived specially from
simulated experiments (Li,1981).

Because the selection of additional parameters has much to do with the effect
of self-calibration, this problem has received a widespread attention. But the
problem is a rather difficult one., The inequality (22) only provides the criterion
for whether a certain group of parameters should be rejected or not. While the
optimum group of parameters need to be selected from the complete combination of
all the additional parameters 8o as that the self-calibration may improve the
quality of estimation to an extreme extent. Besides, such criteria as the
inequality (22) all contain unknowns to be estimated such as S, and O, In
practice those unknowns are always replaced by their estimators which come from
the observations, That thus makes the selection of parameters stochastical.

The less accurate the estimators of those unknowns, the more probable a misleading
selection. Frequently, the more important the selection of parameters becomes, the
more difficult to procure the optimum parameter group.

At present, the commen method for selecting additional parameters in
photogrammetry is to meke the statistical test and the check of determinability to
the additional parameters with their LS estimators obtained from the initial
adjustment and thereby to decide whether to accept or to reject the parameters.

The statistical test is to test the null hypothesis H : s=0 (s may be any single
additional parameter in 3, but the subscripts are omifted here and in the following
for all single elements.) using the statistic T as follows:

P = 8/6/5

in which § and F are respectively the LS estimators of s and ¢ obtained from the
initial adjustment using a model with sufficient number of parameters that it is
granted as the true mecdel, and q is the diagonal element in Q8§ corresponding to 8.
If the orthogonality among the elements of S is poor, the following F-test is made
in addition:

g‘ = é'Q 4S1§/6‘2 .

~
S
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The significance level ot for the tests is determined from experiences, which is
usually one of 0.1, 0.05, and 0.01 as for the common Significance tests. The
check of determinability is to check the following measures of internal and
external reliability of additional parameters:

Vo 8 O’Soﬁ

and Vot = &0

(Ackermann, 1981; Fdrstner,1980)., When the measSures are large enocugh , the
parameter s is thought to be non-determinable. Now the priciple for parameter
selection can be stated as being taking those additional parameters which are
significantly different from zero and determinable and deleting those which are
nearly zero and non-determinable. Such a method for parameter selection has been
reported to be effective in many of the current papers.

i

However, in the current author's opinion, such a method is questionable in
some places. For the sake of prominence of the contradictions, the LS estimators
of additional parameters are assumed not to be correlated with each other. And
only individual parameters are concerned. First, the significance level was
specified to be unreasonably small and so the absolute values of the critical
values were too large. From the Eq.(21) it is known that when 3, contains only
one element s ,%the inequality(22) becomes the sufficient and necessary condition
of Mse(X) »Mse(X). That is %o say, if 72 = s2/02q <1 , rejecting s is preferred
to accepting it, otherwise, accepting s is preferred. Therefore the test for
deciding whether to accept or to reject s should takes Hy: 72 £1 as the null
hypothesis and Hj: T2> 1 as the alternate hypothesis. Because mistaken acception
and mistaken rejection of a parameter are equivalently harmful to the quality,
Hence, if there is no priori information about the parameters available, the
probability of accepting the false and that of rejecting the true should be
specified to be theAsame for the just mentioned test. Now take it for granted
approximately that T follows the normal distribution N(T,1). Accordingly the
critical values are * 1,05 which correspond to o{= B= 50%,which are respectively
the maximum probabilities of rejecting the true and accepting the false, That is
to reject s when ]Tjg1.05 with the maximum probability of making a mistake

being 50%, and to accept s when ]T]>~1.05, q X

again with the maximum probability of making H, Hy H'\ .

e mistake being 50%. Selecting additional 7 rejection
parameters as stated above is thought to be reguwnt

more reasonable by the author. In the past,
this sort of test had a much larger absolute
critical value than 1.05 . That could lead
to a mistaken rejection of parameters more P :
probably. ?hg reason for §uch a lgrge Y i = 1‘P@5 > 4
absolute critical value being Specified may

be that the test using the statistic T was carried out referring to the null
hypothesis Hy: s=0 and a high credit was given to that the null hypothesis is true
regardless of which parameter and what case they were, and that the result by the
non-self-calibration model without any additional parameters was taken as the
reference to which improvement was spoken about and comparison was not made
between the two decisions of accepting or rejecting some parameter (or group).
Those considerations are not reasonable.

Based on the above analysis, it is suggested that in the case of no priori
information available about the additional parameters the test using T statistic
for the selection of additional parameters should take * 1,05 as its critical
values and the critical values should not be far from # 1.05 without sufficient
reason. If there is priori information available about the distributions of the
additional parameters, the Selection of additional parameters should depend on the
conditional probabilities of the parameters under the conditions of their
estimators having been realized, rejecting the parameters when their cenditional
probabilities for that the inequality (22) is satisfied exceed 50%, and accepting
them otherwise, TFor example, supposSe that
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8 ~ N(s Oég) ( ~ means following.)

Oi
which is equivalent to that
2
T = 8/0YT ~ W(Ty, OF)
in which To= 5o/04q and Oy= 0g/0)7 . Since it is known that S~ (s, O'zq_)

for given s , the conditional probability distribution of T for given § is then a
normal distribution with the conditional expectation and variance as follows:

O§§/GIE-+ so0ya 027 4 so6jq
qu + 052 52q + 0§
& os

O'2q + O's? ‘6'2q + 0'82

B(T|8) =

Va:r(’l‘l§) =

in which the final expressions can be tolerated when the redundancy is sufficiently
large. Thws the conditional probability for that the inequality (22) is satisfied
for given s is

1

1 [ - (t - B(1[8))2
ax
_1,}21CVar(Tl§)

which is a function of § . Then reject s if § makes p(8)250% , and accept S
otherwise. When Os= o0, p(£1.0504q) = 50% so the same critical values are
obtained as in the case of no priori information about the parameter available.

Pr(|T| ] §) = Idt = p(8) ,

2Var(T‘§)

Secondly,the check of determinability had not an objective standard for
how large a value when V, 8 reaches s is determinable or non-determinable., For
such a check to act on the selection of parameters will make the selection of
parameters rather arbitrary. It is more questionable that in some procedures
parameters were selected only according to the check of determinability. That is
because the measures 1is only concerned with the geometry of the system not the
magnitudes of the parameters. Such a case may be present that the non-determinable
parameters teke so large values that the errors caused by treating them as zero
are larger than their errors of determination. In fact, if the statistical test
as mentioned above has been carried out, the check of determinability is no longer
necessary. If the check of determinability has been removed, the problem whether
a non-significant parameter, after its determinability has been assured, must be
deleted in all cases {Ackermann,1981) disappears.

PARAMETER APPROXIMATE CORRELATION CAUSES NUMERICAL INSTABILITY AND POOR ESTIMATES

For a group of vectors a;,ap,°-<,ay and a group of real numbers kq,kp,ee.,ky
which are not all equal to zerv, if the following equation is true, the group of
vectors is defined to have linear correlation in it, and not to have linear
correlation in it otherwise.

kiaq+ kpap+ o+ kpay =0 (23)
If the column vectors in the coefficient matrix A in the linear model(3) have
nearly the relation as Eg.(23) describes, the vectors or the elements of X are

said to have approximate correlation among them., In regression analysis, that
phenominon is specially named multicollinearity in recent years.

In self-calibration approximate correlation among unknown parameters is
unavoidable, Although the approximate correlation among additional parameters
can be avoided by proper linear transformation, the relation of the additional
parameters as a whole with the main parameters offers no choice, depending on
the systematic errors the additional parameters expect to describe. It is easy
to see that when the systematic errors are orthogonal to the unknowns, they add
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mo bias to the LS estimators of the unknowns, self-calibration is then unnecessary,
but when the systematic errors become near to correlation with the unknowns, the
biases in the non-self-calibration result increase, self-calibration is now
required. However,at this moment, the additional parameters that describe the
systematic errors correlated approximately with the main unknowns also have
approximate correlation with the main unknowns,

The approximate correlation among unknown parameters has a harmful effect on
their L3 estimators in two aspects. On one hand, amplifies the infruence of
various small disturbances on the solution and makes the LS estimation difficult
to realize., When ther is approximate correlation among the column vectors of A,
the coefficient matrix of the normal equations N=A'A will have very small
eigenvalues and so always cause a_ large condition number. TFrom the relation for
estimating errors in computation

18 x|l K(N) 8] 155l
b = T—mopeer Crer )

in which B is the constant vector of the normal equations, it is seen that a large
condition number K(N) can make the solution of the normal equations very sensitive
to the small disturbances N and B in the coefficient matrix and the constant
vector. In the case of a nonlinear model, a large condition number of the
coefficient matrix of the linearized normal equations can make the iterative
process of solution diverge or converge to a misleading solution, so that the
nonlinear LS estimation cannot be realized. On the other hand, the approximate
correlation involving main unknowns can inflate the variances of the LS estimators
of the main unknowns, so depress the theoretical quality of the result. As is
known from the preceding sections, the sum of variances of the LS estimators of
unknowns is

‘%— var(%;) = Gztr(Qﬁg) = 0Pt (v = 0’2‘%_— 12

in which 4 is a eigenvalue of N . Henee, when approximate correlation is present,
the very small eigenvalues of the coefficient matrix of normal equations will
enlarge the sum of variances of the estimators greatly. That is to say, the
variances of the observations are transmitted to the variances of the estimators
in a very large amplification in this case. So the result of estimation is very
poor in quality even if the process of solution has been completed smoothly and
has introduced no computational errors.

The treatments of the two different aspects of harmful effect caused by
approximate correlation have different requirements and methods. The methods of
treating the computational problems caused by approximate correlation are to
increase the word length in computation and to adopt those algorithms of high
numerical stability for solving the normal equations. If a nonlinear model is
dealt with, various improved Gauss-Newton methods, like the Marquardt method or
damped least squares method in nonlinear programming can be adopted to weaken the
constrait to convergence and ensure the realization of LS estimation. The
Marquardt method has been proved by simulated experiments in close-range
photogrammetry to be effective in overcoming the difficulty in numerical solution
of LS estimation. The table below shows the numbers of iterations and the LS
estimators of the reference variances by the Marquardt method in the cases in
which the Gauss-Newton method breaks down.

case 1 2 3 4 5 6 7 8 9 10 11 12

g’ 22.0 22.0 3.0 22.0 3.0 22.0 12.0 22.0 22.0 3,0 9.0 22.0

og 24.3 25.5 3.3 23.8 3,4 24,5 12.6 25,4 25,7 3,2 10.4 24.0
iter.numb. 6 7 8 10 11 12 13 14 15 18 24 25

As to the degradation of the quality of estimation due to approximate correlation,
improving the estimating method itself jg needed to overcome it. That is not easy
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as a rule. The errors of observations are always much more considerable than the
disturbances in computation, hence the requirement of the condition of normal
equations for ensuring a good theoretical quality of estimation is generally
harder than that for ensuring a stable computation. In general, if computational
instability is encountered, then even though the LS estimators have been procured
by some way, the estimators are still very poor in gquality. On the contrary, when
the quality of estimators has been improved by refining the estimating method, the
instability of computation will vanish accordingly. Therefore, in the presence of
approximate correlation, improving the estimating method is most important. Of
course, if approximate correlation appears only among the additional parameters,
not involving the main unknowns, then only considering the computational problems
may be enough.

At present, the common method of treating approximate correlation in
photogrammetry is to treat the additional parameters which cause approximate
correlation as fictitious observations with certain weights rather than as free
unknowns. As a rule, the observations are designated to be zero, and the weights
to be small values or such values that their corresponding stantard deviations are
equal to the possible magnitudes the parameters themselves might have, or to be
determined iteratively. Such a method has been proved to be effective by some
practical data reductions. In fact, the methods as such no longer lead to the LS
estimators as originally. It has been shown in the other paper of the author's
(Huang, 1986) that such methods essentially conform to the principle of biased
estimation in regression analysis. Therefore they can not only overcome the
numerical instability caused by approximate correlation, but also improve the
quality of estimators, producing rather satisfactory results. However, it is seen
in some literature that not all people doing so could realize those points.

Several years ago the methods named "fixed segmentation" and "sequential
segmentation" were proposed for treating approximate correlation in place of thsoe
methods with fictitious weighted observations of additional parameters so as to
avoid the time-wasting computation of matrix inversion. In those segmentation
methods, all unknown parameters are segmented into several groups so that
parameters in the same group have no approximate correlation with each other.

Only one group of parameters are carried as unknowns in each soclution of a
iterative process while the others are kept as their current values. The group of
parameters as unknowns is alternated for each successive iteration step. This
iterative process is conducted until proper convergence is reached. Such
segmentation methods can save a large amount of computation indeed. They have
been incorporated into some computation programs and proved to be effective as
reported in some papers. However, in the paper in which the segmentation methods
were proposed,there was no theoretical basis for the methods accounted for and no
comparison given between the methods with those treating parameters as fictitious
weighted observations. So some gquestions may be put to the segmentation methods.

The current author believes that the segmentation methods carnot completely
play the role of the methods treating the unknowns as fictitious weighted
observations. The segmentation methods are similar to the alternating coordinates
method in nonlinear programming except that the former alternates coordinates
group by group while the latter one by one. They can only surmount the numerical
instability caused by approximate correlation and prevent the LS solution from
breaking down as various improved Gauss-Newton methods, but cannot improve the
quality of estimators as the method treating unknowns as fictitious weighted
observations. Because approximate correlation not only causes numerical
instability but also lowers the gquality of estimators. Therefore, it seems
impossible that utilizing the segmentation methods in photo-variant self-
calibration (Moniwa,1980) can treat the approximate correlation due to the
increase of the number of parameters satisfactorily and make the result of the
photo-variant self-calibration superior to that of the block-invariant one in all
cases., So far, no method with less computation has been found to possess the
complete function of the method treating unknowns as fictitious weighted
observations. TFor this reason, it is necessary to research on simplifying the

- 66 -



computation in the method.
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