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1. GENERAL DESCRIPTION

The fleXibility of photogrammetric equipment systems and tech-
niques has grown by the influence of space travel and computer
technology. In addition to photogrammetric c¢ameras use 1s now
made of non-metric or partially metric cameras, opto-mechanical
and opto-electronic strip cameras for data acquisition. The
portions of +the earth’s surface covered from space are now -
depending of the recording system - so large that distortions
occuring in special map imagery have to be taken into congide-
ration in restitution. Both, in photogrammetric software packa-
ges (e, g. for aerial triangulation) and in analytical plotters
the resulting requirements cannot all be satisfied with the
normally implemented mathematical model of c¢entral perspective.

In order to overcome this state an algorithm 1is suggested,
which universally applies t¢o all Kinds of picture and arbitrary
object coordinate systems and in which the differences of the
individual mathematical models can be allocated to the process
of image orientation., The description of the algorithm ias given
for the computation of image coordinates from object coordina-
tes, which is the basis of all analytical plotters., Starting
point of +the universal algorithm is a general formulation of
the image equation, with the relationships between object and
image coordinates being separated into several transformations
(Fig. 1) and treated by the theorem of Taylor.

In Fig. 1 the transformation X’ = F(X) apprlies to the mathemati-
cal model of the recording process, X = U(X) to the relations
hetween two object coordinate systems, and X’'g = G(x’) to the
influence of gystematic errors on the image coordinates,

According +to the theorem of Taylor each function f = f(X,y,2)

beeing (r+i)-times continuously differentiable can be developed
in the environment of a point Py(Xqe: Yor Zo). Hence, an algo-
rithm hased on Tavlor’'s formula operates as follows., The object

space 18 subdivided into spatial segments. The centre coordina-

tes, the appertaining image coordinates, the appertaining

values of the partial differentials and of the remainder terms

are stored for each segment. The transition from one segment to

a neighbouring segment is always associated with a change of

the entire parameter set.

If the theorem of Taylor is applied to

0 = f (X7, 2) (1)
i i

with r = 1 and the index i characterizing a special image
coordinate 1is dispensed with, one obtains the following rela-
tion for the image coordinates '
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X’ = X' + F -d4x + R (2)
o b4 X’

drx = (4= ay daz) = (®E-X Y-y Z-2Z }

Fx iz the matrix ¢of the partial derivatives,.

The Lagrange remainder term reads

£ £ f
XX XY X2

T
R : ¥dx F  -4x F = £ £ £
’ XX XX X¥ ¥y YZ
£ £ f
XZ vz ZZ
f = f (X +84X,y +48dy,z +48dz),...d8 € (0, 1)
XX XX O 4] o ‘

are the 2nd derivatives of f.

The problem of the calculation of the remainder term Rg: or of
the matrix Fgy lies in the determination of the factor 4,
which in the general case & = &(X,Y,z) 1s  dependent on
Xo» Yor Zo a8 well as on dx,dy,dz, 1.e. it changes from point
to point. To investigate possibilities of the exact calculation
or of the improvement of the remainder term,LaR§: is determined

also by inversion of (2) and compared with Ry

If the evalution 1is not to be made in the coordinate system

(x,v,2), but in a coordinate system (R, 9,2}, for which
the following relation holds true
X u({®, v, 2)
X = ﬂ b4 H = ﬁ V(%, 7, 2) n = U(E), (3)
z w(%, ¥, 2)

Taylor’s formula must be rewritten as follows:

- T
X' = ¥’ + F_-d% + R R = %-d¥ 'F__ -d% (4), (%)
0 X X’ X’ XX

In +the c¢alculation of the partial derivatives in (4) and (B8)
the substitution of (3) in (2) 1is understood to be a change of
the variakle and the c¢hain rule 1is applied 1in the further
process. In matrix notation it holds for ithe first derivatives

X Z
F_ = (£ £ f) =¥F U , U = v v v (6)
his his v Z x % his X b4 z

w w w

h4 v 4
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Also the second derivatives can be combined in a matrix Fxx

U F U +F U (7
X ¥ XX X X E=E

F - | o F o O = (i,3) null-matrix

r v W u v W u v w
XR® XX X XYy Xy Xy ¥Z Xz %2

u v w u v W u v W
X XY XY ¥¥ Y¥y Y¥¥Y YZ ¥2 @ ¥Z

2

u v W u v L u v w
S 44 XZ h-41 vz ¥z ¥z ZZ Z22 ZZ

Then +the evaluation in a coordinate system (X,¥,2) can be rea-
lized 1in such a way that for each segment the calculation of
the elements of the matrices Uz and UgR is additionally perfor-
med and the matrix multiplications shown in (6) and (7) are
carried out.

The‘use of U(R) presumes that the relations existing between
the object coordinate systems (,v¥,2) and (%, 9,2) are explicit-
1y presented and that all parameters occurring in (3) are Known.

If systematic errors are still contained in the images, the
final image c¢coordinates must then be calculated by

xJ = xl, 2
K gl ¥')

By application of Taylor’s formula one obtains

X' - X' + @3 -4x’ + R (8)

Kk Ko X’ XK’
T T

with ¢ = (g_, €, ), dx' = (4ax’ dy’) = H(x’~x’) (Y’-Y’)B
X X Yy O 0
T
R = ¥ 4dx’ -G -dx’
XKk’ XX’

By substitution of (4) it follows

F _-d% + R F R
1 X’ ix x’
x’ X’ + G - = X' + @ AR + - (9)
K Ko X')F _-d® + R Ko X'#f F R
Yl

2x% 2% v’

It depends on the amount of the image errors to be corrected if
the remainder term in (8) and the multiplication of Ryg: and Ry:
by Gg- can generally be neglected or not.
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(4 and (9) are valid independent of whether the 1mages
were taken with a photogrammetric camera, strip camera, Ppanora-
ma camera or a scanner, If the remainder terms c¢annot rigorous-
1y be calculated, then the remaining errors have to be ascer-
tained and must be taken into account in the specification of
the maximally admissible dx, dy,dz (1. e, of the environment of
the local zero polnts Po(Xgs Yor 2o}, 1n which Taylor’s formula
may be used). Thusg, the differences between the individual
image types are part of a preceding program, in which the
local zero points Pyj within the model are fixed and the apper-
taining 1loc¢al zero points in the images. as well as the
partial derivatives of the different matrices are calculated,

The use of 2 image coordinate systems as well as of 2 object
coordinate system renders it possible to expediently split the
mathematical relations Dbetween image and object coordinates.
Expedient allocations may for example he;

Aerial photogrammetry

U(g) : Earth curvature, refraction, special map projection
F(xX) : Central perspective ;
G(x’): Lens distortion, film deformation

Terrestrial photogrammetiry

U(R) : Special object coordinate systems (e. g. cylindrical
coordinates), two-media photogrammetry

Central perspective

Lens distortion, film deformation

F(x)
G(x’)

ae we

Evalution of scenes taken by opto-mechanical scanners

U(R) : Special map projection, earth curvature perpendicular
to the flyving direction, refraction
F{x) : Central perspective inclusive o¢of the temporal change of
of orientation elements, earth curvature in flying
direction
G(x’): -

Some components of this survey are described in the following
Sections.

2. THE MATHEMATICAL MODEL OF THE TAEKING PROCESS

The mathematical model of the taking process with photogramme-

tric cameras 1s the c¢entral perspective, which 18 described
whith the Known collinearity equations
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i 7T
Y’ = — A Y-y
A’ 01
-C Z-Z
K 01

They were investigated in HMark, 1986 by the principles described
in Section 1 and led to the rigorous solution

14 4
] o
X’ = X' + — F -4x y’ = y' + ————— F -dx
o £ + df ix 0 £ + 4t 2x
o o
(1Q)
i T i T
F = - —{(cC 0 X’) A , F = - —(0 ¢ v’)-A
ix 4 K (o} ex 4 K 0
] o
I =-a (x -x )+a__(y -y )+a__(z -2 )
0 i3 o o1l 23 "o 01 33 o oi

af - a dx + a_ _dy + a_ _dz
i3 23 33

A second example refers to the evalution of scanner scenes, for

which the starting equations were given by Konecny, 1976. These

equations must however be modified depending on the type of the

scanner. For demonstration, reference is made in the following

to the French satellite SPOT, for which it is assumed on +the

basis of data given by Guichard, 1983 and Toutin, 1986 that the

scanner 1is very well stabilized and hence

- the motions of the projection centre of the scanner during
the scanning process of a scene are performed with constant
Speed in an undisturbed orbit which is approximated by the
curvature circle

- the angle orientation in space is a linear function of time
or of the distance covered.

Without dealing with the derivations in detail, merely the
result is given here. It reads for X’ (see equation (11)).

The coefficlents a4 to dg are calculated from the rotation ma-
trix for the central pixel of the scene, the linear changes of
the orientation elements within the scene, and the influence of
the earth’s rotation. In (11) the influence of the earth’s
curvature 1in flying direction has been takKen into considera-
tion. The +treatment according to section {1 yields for x' +to
equation (1i2) '

The elements (xi) to (x61i) are calculated from the coefficients

a; to dg and the coordinate differences (Xgp-Xot,» (Yo-Yoi):
(ZO"Zoi).
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a (E -X +a - ta_(2 -2 +a (X ~-X - +
1( i 01) E(YI Yoi) 3( i 01) 4( 1 01)(Y1 in)

a - ?+a - zZ -z )+a_(xX -X - 2+
S(Yi Y01)3 S(Yl yoi)( i 01) 7( i 01)(Y1 yoi)
+a ~ 2 (z -2
) 9(Y1 Y, )t (202 )
-Z )+b (X -X - +
i 01) 4( i 01)(Yl Y01)

Z ~Z +h_ (X -X - o+
) i 01) 7( 1 01)(Y1 Yoi)

a -
8(Y1 yoi

c .
KD (g -X +Db - +bh (Z
1( i 01) E(YI yoi) 3(

X' = -
b - 2 +h -
5(y1 YOi) E(Yl Yci

3
b - +b - t(z -z
S(Yi yoi) Q(Yl Yoi) ( i 01) (11)

Ix
0 T
X' = x’ - dx" - dAX - dX (12)
o §x0+d§x H ix B
1 (%1 3
N H(x ) (x2) (% )H
ix £x K o (x4) (x5) {(x6)
0 (xti)c +(x41)x’ Q
K 0
dAX =

(x11)c +(x41)x’ (x21)¢_ +(x51)x’ (x31)c_ +(x61)x’
K 0 K 0 K o

Q (x31)¢c +(X61)x’ o
K o

3. THE EXTENSION OF THE TAKING PROCESS TO THE OBJECT COORDINATE
SYSTEM (%,9,2) AND THE IMAGE COORDINATE SYSTEM (X&,... )

For central-perspective 1mages the combination of (4) to (T)
with (10) leads to the egquations

L
[+) T
X' = X, + ——— (K dR + %d¥ ‘R -dR) (13)
g+ ag
O
K =F ‘U , R =F U
1 i1x % 1 1x ¥R

For SPOT scenes one obtains by combination of (4) to (7) with
(12)

Lx
¢

1

]
‘%

+

T
x’ HKi-dX + 4% -dx¥ ‘Ri'dX B (14)

Ix +drx
[}

- T
K =F -U R =F U - — U _-dAX-U (15)
b4 h:4
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Expanding (13) to include the consideration of systematlic image
errors leads according to (9) again te (13) with

X G F
i ix’ ix
- . ]
X G F X
2 2x’ 2x
This erxpansion shall not be furtiher considered here.

The comparison of (13) with (1i4) shows that (i4) is the wanied
universal algorithm.

4, EXAMPLES FOR (=%,9,2) OBJECT COORDINATE SYSTEM

If a restitution is to be made in an (%, 9,2) coordinate system
rather than in an (¥,y,2z2) one, the following prerequisites have
t0o Dbe established according to sect. i. First, establish x =
U{() (3). From this, form the matrices of the partial derivati-
ves Uiz and Uxk, If (3) is used in the form of approximative so-
lutions or series expansions, it is necessary to ensure that
the replacement function represents as correctly as possible
not only the initial function but also its partial derivati-~
ves, because this greatly bears on the the segment dimensions.
Finally, compute for every segment the amounts of the partial
derivatives and the matrices K and R, according to (15).

In +the following examples, only the relations x = U(R) are
given for lack of space.

4.1, Linear dependence

As an example from architectural photogrammetry, Mark, 1986
reported on the restitution in an object coordinate system that
was tilted relative to the taking base or to the control coor-
dinate system. ‘ )

4,2, Allowance for earth curvature and refraction

Earth curvature may be allowed for both with photo and model
coordinates. Correction of the model coordinates is8 a rigid
solution, whereas the correction of photo coordinates 1s appro-
¥imative for all nadir distances deviating from zero, Both 1in
aerial and satellite photographs greater photo tilts must Dbe
expected, 20 that the rigid sclution should be preferred.

The horizontal plane of the photcegrammetric (X,¥, 2Z) coordinate
system touches the datum surface of the normal height system,
which may here be assumed to be a sgpherical cap, at point A, To
obtain symmetric conditions with regard to the influence of
earth curvature in the left and right photographs, we select

X - X + -bx = + b
A o1 A yA yoi # by

The curvature of the imaging ray due to refraction has the
effect that object point, rrojection centre and image point 4o
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not ke on a straight line. The error thus produced can be
allowed for in the object coordinate system,

If a mean terrain height iz taken for a model, refraction is
compensated with sufficient accuracy by A : Kresr, -tang, with
Krefr, = constant, Thus, we can write for the left photo for (3)
X -X = R - =
1 ot ’ 1751 ¥
R o+ 9

i
- - — - ? - H — - .
z1 Z ER[(? ¥bx)t + (¥-%by)t] + (1 + . )z)(Z Zoi) KRefr

ol

4,3, Two-medlia photogrammetry

Two-media photogrammetry 1s a speclal case of multimedia photo-
grammetry, It 1is c¢oncerned with measurements in photographs
taken through +two media of different density separated by a
(plane) interface (Hoéhle, 1971). In many cases - in hydroengi-
neering model experiments or in shallow water surveys - the
interface 18 horizontal, which further simplifies the solution
of the tasKk,

Following Hdéhle, 19714, the (X,y,2) coordinate system 1is placed
into the interface G . In this coordinate syvstem, that part of
the imaging ray which belongs to the medium of refractive index
Ng is described. The other part of the imaging ray lying in the
medium of the refractive index ng is described in the (%,9,2)
coordinate system The problem consists in establishing a rela-
tionsship between the two coordinate systems. The derivation
leads to

n

f(r) = - r(1 + ) = 0, K = (1 + -1 rt) Nz P (16)
o z NK ’ l N2 oz ' " n
o1 01 [4 4

which 1is developed into a Taylor series.

From +the first two summands there results Newton’s well-Known
approximation formula, which 1is substituted for the terms with
the second and higher derivatives and solved with regard to

Z HK(P-r )-r 2
o1 0 o

ro:r o+ xe -1+
o 3 3
z NK + 2 aNt z2 - (z NEK + Z)¢

o1 o1 ot

3(M -1)r 2{z NE(F-r )-r Z]
o o1 Q 0

I

(17)

In K 8et 1 = r
e}

with (17) 1t 1is possible (¢f. Masry &Konecny, 1970) Dby the
introduction of separate space points Pg for the left and right
rhotographs, to establish the wanted functions u, v, w.

r r
X-%x =—%, Y-y =-—%, z:0
ol [+3 1
r r
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4.4, Restitution of cylindrical coordinates

Cylinders are a basic form in building construction and in-
dustry. They not only occour in towers or tanks but als¢e are
fundamental to vaults, For ihe optimum preparation for recon-
gtruction Jobs, cylindrical surfaces often have to ke deve-
loped,.

The connection between the (X,vy,2Z) and (%,9, 2) coordinate Sy~
stems is given by MarkK, 1986,

5, SUMMARY AND OUTLOQK

As explained in section 1 to 4, it is possible, by means of
Taylor’s formula and a special form of the remainder, to derive
an algorithm which 18 universally applicable to all mathemati-
¢al models of the taking geometry, to the correction of photo
and model coordinates for systematic errors, and to the intro-
duction of non-cartesian model (object) coordinates, as demon-
strated 1in section 4 Dby several examples from terrestrial and
aerial photogrammetrvy,

In addition to 1ts universal applicability, the algorithm has
an other  =alilent feature - 1t iz a rigid s=olution for the
restitution of frame photographs in a carteslian model coordi-
nate system Given the high guality demands placed on photo-
grammetric restitution, this is a remarkable advantage for the
majority of restitution assignments, which places the proposed
algeoerithm on the game level, in terms of usefulness and rank,
with the collinearity edquationsg of centrally perspective pro-
Jjection,

The proposed algorithm has many potential uses.

Firstly, 1t suggests itself for use with digitally controlled
pPhotogrammetric restitution machines such as analytical stereo-
plotters or orthoprinters, and for analytical single-photo
restitution,

Moreover, it 1is possibkle to employ the proposed algorithm in
systems Dbased an the principles of digital image processgsing.
The analysis of image sectlion common in that field even accomo-
dates the segmentalization of the model space, because 1t
requires less frequent c¢hanges of parameter sets +than +the
rather object-related compilation in the c¢lassical photogramme-
tric¢ restitution instruments. Thus it appears feasible that
parameter sets, rather than being ztored in toto, be computed
during the +time that is needed anvhow for c¢onstructing +the
image on the video s¢reen.

The proposed algorithm may just as well be used as a basis for
rFhotogrammetric computing programs such as for aerotriangula-
tion, These programs, which s8¢0 far were only applicable for a
limited range of applications, now become open for implementing
any camera-to-object geometry and any object coordinate system,
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without the need of Iinterfering with fundamental program
structures.

Thus, in the restitution of photographs and the processing of
digital data collected with opto-electronic systems, the uni-
versal algorithm proposed 1s an alternative to the use of
special mathematical models.
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P)
hysical photo coordinates (x’,y’,x",y"
rhy o) | ( K YK K'YK)
X’ = G(x’
K (x’)
P’ )
photo coordinates (x’,v¥’, X", vy")
X’z F(x)
P . )
object coordinates (X,V,2)
X - U(®)

object coordinates (%,7,Z)

Fig. i, Transformation of object coordinates into photo coordi-
nates
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