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Abstract 

Current analytical treatments in photogrammetry are based almost exclusively on point fields. 
While these have worked well for hard copy photographs and human operators, the introduction 
of digital imagery and the desire to apply automated techniques require new treatment based on 
other features. Object space features can be in the form of points, lines (straight and otherwise), 
and surfaces (planar and curved). Analytical photogrammetric techniques should be developed to 
treat the relationship between such object features and their projections in the image space. Both 
functional and stochastic models are required. 

In this paper a rigorous mathematical development is presented for the photogrammetric 
observation condition equations of the straight linear feature and the conic sections. 
Consideration is given to various photogrammetric operations such as: space intersection, space 
resection, and triangulation by using these linear features. 

1. Introduction 

For the past several decades, photogrammetric activities dealt with hard copy photographic records, suitably 
designed equipment to accommodate the photographs, and the human observer to manipulate the instruments 
and extract the desired information. While this well established approach remains in much use, the past few 
years have brought significant advances which will potentially change the standard approach quite dramatically. 
The fundamental factor causing the change is embodied in the word digital; digital imagery, digital processing, 
and digital proqucts, 

We have seen significant increase in the acquisition of digital imagery, ranging from those taken from space to 
images acquired in the laboratory for industrial applications. Digital processing has actually been in existence 
for a relatively longer period, including batch processing in, for example, triangulation, and on-line reduction 
involved in analytical plotters and the like. Digital products followed logically from digital processing, where 
the restrictive graphical products were slowly replaced by the much more flexible digital form, which can 
readily be used to produce a variety of hardcopy grapl11lCS. 

Of the three elements of advancement, digital imagery is likely to have the most profound impact on 
modernization of the photogrammetric· tasks. It opens the door to the implementation of a multitude of digital 
image processing and analysis operations. Such operations will slowly take over tasks currently performed by 
the human operator. 

Current photogrammetric reduction relies almost exclusively on llpoints" , both in the object and their 
corresponding images. Such points are described by their 3D object. or 2D image coordinates; and the 
mathematical formulation of photogrammetry has essentially been based solely on point correspondence. With 
digital imagery, and digital image processing, points actually are much less attractive and usable than other 
features such as lines and areas. Remarkably. this may actually have also been the strength of the human 
observer. In order to rigorously accommodate the extraction and correspondence of these features, suitable 
photogrammetric formulation must be performed. It is critical to point out that in dealing with features, for 
example a line segment, we must be so general as to assume no point correspondence. Thus, a line feature on 
the ground may be represented by two different line segments, one on each of two images, where one represents 
an object segment totally different from that represented by the other. 

One may come to realize that we are now entering an era of feature-based photogrammetry. Not only should 
the photogrammetrist develop the proper theory to deal with corresponding features and their reduction to 
object space, but he should lend support to solving the correspondence and matching problem. The insight and 
geometric knowledge provided by experience in photogrammetry, can be effectively used in seeking a better 
solution to this problem. Furthermore, such experience can provide support in a better approach to three­
dimensional solid object modeling. Finally, with the extensive experience of the photogrammetrist in the 
treatment of stochastic properties of observation, a much needed treatment of linear and area features can be 
properly done. 
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Recognizing the extensive nature of the subject, this paper will be limited to treating some aspects of linear 
features. However, research is currently proceeding at Purdue University on various aspects of this topic. 

A linear feature may be described as the path taken a point as it travels through space. Examples are: the 
straight linear feature L • the circular linear feature C, the helix. and so on. Linear features are classified as two 
dimensional and three dimensional. 

The image of a three dimensional linear feature is a linear feature in the two dimensional image plane. There 
are two main ways to utilize the image space information. The first method would be to use the geometric 
relationship due to the projection of the three dimensional linear feature. For example, the image of a straight 
linear feature L is projected as a straight linear feature. and the image of a circular linear feature C is generally 
an ellipse. However, besides these two examples the determination of the geometric description of the image of 
a linear feature becomes very difficult as the object space linear feature becomes complex. The second method 
would be to realize that the image of a linear feature is a conection of points recorded by a photogrammetric 
process in such a way that the directions of the light rays have been preserved. This second method is able to 
accommodate many different types of linear features whose geometric shape in the image would be difficult to 
determine. Furthermore, this method can be easily extended to other sensors such as the linear array and the 
optical-mechanical scanner. We will call this method: Space Form Fitting of a Linear Feature and it 
is the method detailed in this paper. 

Typically a linear feature will be found in the image space of several cameras. The problem of determining the 
space position of a linear feature would be greatly reduced if the images are brought into orientation and 

correspondence between the in the images and the points in the object space has been assigned. This case 
would be a matter of form in the object space only since the object space coordinates of the points on the 
linear feature would be known, see Mikhail and Mulawa (1985) for some techniques. However, this matching 
of conjugate image points is generally done by a human observer and furthermore the matching of conjugate 
image points is unnecessary for the determination of the object space linear feature. In this paper, we assume 
that the conjugate matching of image points has neither been attempted nor accomplished. 

It is important to determine whether the photogrammetric observation of an arbitrary point on a linear feature 
redundancy. Note that in general. the photogrammetric recording of a ray or direction represents two 

degrees of freedom. In the case of frame photography this would be the photo coordinates. Each point on a 
fixed linear feature requires only one degree of freedom. For example, each point on a linear feature can be 
made to correspond to the arc length from a given point on the linear feature; thus requiring only one degree of 
freedom: arc length. Therefore we find that each photogrammetric ray affords a single redundancy, and this can 
be used in a redundancy budget to solve for treatments such as: Space Intersection, Space Resection, and 
Triangulation. 

Since the form fitting will be done in the object space, we wish to develop the relationship between the object 
space and the image space. Recall the coIIinearity equations for point features: 

[ 
;] = k M ( P - L ) 

-f 
(1.1) 

where: x.y are reduced photo coordinates M is a rotation matrix taking object into image 
f is the focal length P an arbitrary point in the object space 
k is the scale factor L the perspective center 

We specify that (x,y) are the reduced photo coordinates for simplicity and require that systematic corrections 
such as: reduction to principal point. radial distortions, and atmospheric refraction have already been 
performed. Note that a direction vector p in the object space that corresponds to the observed image space 
vector is: 

(1.2) 

As review, three vector products are very useful and their notation is presented here. Let: a,~, and 'Y be 
direction vectors. Then the dot product or scalar product is denoted as: ao~, the cross product as: ax~, and the 
scalar triple product as: ao~x'Y or the determinant I a ~ 'Y I. Also, the norm of a vector is denoted by: lIall. 
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2. The Straight Linear Feature: L 

2.1 Standard Form of the Parametric ({eJpresen,tation 

We believe that the best way to describe the construction of a straight linear feature L is through the use of a 
fixed point on the line L and a vector in the direction of the line L . The Parametric Line ~ualtimls 
are a well known set of equations that can be used to describe a straight linear feature L in the three 
dimensional object space. 

L: 

where: P== ypzp]T 

C== Yc 
s= 
~ == [xf3 Yf3 zf3]T 

L: P=C+s~ 

any on the line L 
a fixed point ( center) of the line L 
the length scalar 
the direction of the line L 

The length scalar s is a nuisance parameter which is associated one to one with the point P on the line L. The 
observation to underscore is that all the information needed to describe the straight linear feature L is 
contained in the direction vector ~ and the fixed point C. For this reason we will call the fixed point C and the 
direction vector ~ the primary descriptors of the straight linear feature L. We state this as: 

(2.2) 

Representation of the line L by a fixed point C on the line L and a vector ~ in the direction of the line L is not 
unique. Two more conditions are needed to ensure that the representation of the line L is unique. First, we 
require the direction vector P to have unit length. 

II~II:::: 1 (2.3) 

or, equivalently, 

(2.4) 

The advantage of this is that we can interpret the length scalar s as the Euclidian distance or arc length from the 
fixed point C to the point P. For example: 

lsi =IIP-CII (2.5) 

There still exists one degree of freedom in selecting which point C is to be fixed on the line L. We note that 
there exists a unique point on the line L which is closest to the origin O. 

IICU ~ minimum! (2.6) 

It can be seen from the figure below that for C to be the closest point on the line L , then the vector C - 0 is 
orthogonal to the direction ~ of the line L . Thus we have: 

IICII ~ minimum! ~ (C-O).l P ~ C..L ~ ~ Co~ = 0 

This gives us our second condition to be enforced: 

Co~::::O 

(2.7) 

(2.8) 

This closest point C on the line L deserves a special name to distinguish it from all the points on the line and 
we will call this closest point the center C of the line L . 

There is a special case that occurs when the line L passes through the origin 0, where the center C must also 
be the origin O. This special case will satisfy equation (2.8). 

A review of equation L : p:::: C + s~ shows that each point P on the line L is composed of a linear combination 
of two orthogonal components: C and~. In this linear combination one component C is fixed, but the other 
component s~ has a variable length equal to I s I ~ 



L: 

There is another item to address. We may represent a line as: 

L: P== C + sp == C + (-s)(-P) (2.9) 

This indicates that the sign of the direction P is not resolved. In general, this must be a convention and the sign 
is not recoverable. However, the sign selection of the direction p only affects the sign of the length scalar s. For 
these reasons the sign of the direction vector p will not be a problem. 

The line descriptors C and p represent 6 unknowns, which when taken together with the two constraints: npl! == 1 
and Cop == 0, reveal that the straight linear feature L has 4 == 6- 2 independent unknowns. Determination of 
independent descriptors for the line L is highly desirable for adjustment techniques and analysis of the 
propagation of variances. However in using independent descriptors the geometric reasoning and interpretation 
is not as clearly presented as when using the center C and direction p as line descriptors. Some of our future 
research will be the investigation of possible independent descriptors. 

The selected representation which enforces equations (2.3) and (2.6) is called the standard form: 

L (standard form): {C,P I liP!! == I,lICn ~ minimum!} (2.10) 

or equivalently: 

L (standard form): {C.P I pop == 12, Cop == O} (2.11) 

The use of the center point C and the direction vector P as straight linear feature L descriptors offer much 
flexibility, freedom from degenerate cases, and a straight forward geometric reasoning. 

2.2 Method of Additional Parameters 

Recall that the recording of a photogrammetric ray of a linear feature represents a single redundancy. Suppose 
we wish to carry both the intersection point P and the scalar s from the parametric straight line equations (2.1) 
in our model. This would give four additional unknowns and when combined with the single redundancy we 
find that each arbitrary point observed on the line L requires five condition equations. For this model we 
suggest using two collinearity equations and three straight line L form fitting equations. Thus: 

(2.12) 

Another similar method would be to eliminate the three straight line L fitting equations by substituting the 
parametric straight line equations into the collinearity equations (1.1) This leaves one additional unknown s and 
a single redundancy, thus giving two condition equations: 
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mll(xc+sx~-xd + m12(yc+sy~-yd + m13(zc+sz~-zd 
x=-f------~------------~----------~--

m31(xC+Sx~-xd + m32(yc+sYf3-yd + m33(zc+sz~-zd 
(2.13) 

m21(xC+Sx~-xd + m22(yc+sYf3-yd + m23(zc+szf3-zd 
y=-f------~----------~----------~---

m31(xC+Sx~-xd + m32(yc+sy~-yd + m33(zc+sz~-zd 

While both of the above models will work adequately they may be sensitive to initial approximations and 
require solving more equations and carrying more unknowns than is necessary. This stems from the fact that 
equations (2.12) and (2.13) are more of an algebraic solution than a geometric solution as is presented in the 
next section. 

2.3 Coplanarity Relationship of the Straight Linear Feature: L 

Recall that recording a photogrammetric ray of a linear feature represents a single redundancy. Thus the 
photogrammetric relation of the observation of an arbitrary point P on a straight linear feature L can be 
represented by a single condition equation if no additional parameters are included. 

Consider the object space geometry represented in the figure below. 

where: 

L: 

C 
~ 
P 

J 

L 

I 
I 

I 

....... 

the center of the line L P an intersection point on the line L 
the direction of the line L L the perspective center 
the observed direction vector to the point P on the line L 

The direction vector p of the photograrnmetric ray, the direction vector ~ of the line 1L , and the direction vector 
formed by the perspective center L and the center C of the line L must be coplanar. 

I P ~ (C-L) 1=0 (2.14) 

Note that this representation is similar to the coplanarity equation used in photogrammetry for point features. In 
our case, the center C and the direction ~ act like a camera that can only look in one direction. This is a very 
convenient form to represent the redundant condition equation. The intersection point P is not in equation 
(2.14) because the coplanarity relationship captures the essence of the geometry without needing the nuisance 
parameters of the points P on the line L. Equation (2.14) will allow for the determination of the primary 
descriptors L: {C,~} without the the need to determine the intersection points P on the line L . 

Since the coplananty relation is written for a single photogrammetric ray, the following is an indexing system 
that will allow for several intersection points P on a line 1L as well as several cameras Land several lines L . 

Let: i be the camera number, j be the line number, k be the point number 

Then the coplanarity relationship for the straight linear feature 1L j as written for condition equation Fijk: 

Fijk = I Pijk ~j (Cj - L i ) I = 0 (2.15) 

Where: 

(2.16) 
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to the standard form rep1resentaticm of the <:''-''''1£''0"'1£ linear feature 

(2.17) 

2.4 Treatments the Linear Feature IL 

There are three main photogrammetric treatments that can be applied to linear features: Space Int~erS€~tion, 
Resection, and Tnan~~U12ltlO:I1. 

Space Intersection can be used to determine the object space position of a straight linear feature IL given two or 
more cameras each with known position and orientation. Caution must be exercised to avoid viewing the 
stnligllt linear feature IL as an view. For suppose that two cameras are used and the 

of the line 1L falls an line between the cameras. Then we may determine the in the 
space that contains the line IL but can not determine the location of the line 1L in that plane. 

A linear feature IL j: ( } may be uniquely determined by two photogrammetric rays from 
each of two different cameras. would four condition equations of the form (2.15) which when 
combined with the two constraint in (2.17), six equations. Since we have six unknowns 
{ } • and the are this satisfies a solution for IL j: { Cj.~j }. 

If more than the minimum amount of observations are then a least squares adjustment is used. A least 
squares program has been written to test the numerical and computational effort required to 
pertor:m this space intersection. The numerical indicate that the· coplanarity of the 
smuglll linear feature IL is very stable and robust with respect to the initial This may be 
indicated by an examination of some of the derivatives. the from (2.15) 

dF 
[ ~x( 

T 
== (2.18) 

dF [ )Xp]T (2.19) -

[ px 
T 

(2.20) 

From of the it can be seen that each of these derivatives converges to a vector 
which is normal to the defined by line 1L and the center L. These directions for the gradient 
of the observations and unknowns offer convergence and numerical stability. The aspect of 
cornptltation;al effort was found to be modest. In particular, since in equation (2.15) the observation of 
each photogrammetric ray Pijk appears in only one equation, the coefficient matrix for the observations will be a 
block If the observations . of all the photogrammetric rays are uncorrelated with the other 
photogrammetric rays then the covariance and cofactor matrix of the observations will also be block diagonal. 
This offers a suitable structure to allow for the accumulation of reduced normal equations by using direct 
summation techniques as is commonly used for the point feature photogrammetry. Furthermore, this block 
structure will allow the partitioning of the unknowns in such a way as to allow for the determination of each 
line 1L j separately from the rest. 

One item to address in this section is the of the covariance or cofactor matrix of the estimated straight 
linear feature 1L The matrix for L j will be a 6 x 6 matrix, however its rank will be equal to four due to the 
constraints Possibly, the best way to this rank: deficient matrix is by using a spectral 
decomposition to produce the eigen values and eigen vectors. From this decomposition the degenerate ellipsoid 
can be analyzed with respect to principal dimensions and orientation. 

Space Resection is the determination of the position of the perspective center and the orientation of a frame 
camera by using features in the object space as control. In this case we will use the straight linear feature 1L as 
control. Note that the image of a straight linear feature IL is a straight line in the image plane provided that all 
distortions have been removed. Since this line in the image plane can be defined by two distinct points, it 
follows that each straight linear feature IL that is observed offers two photogrammetric rays and thus two 
condition equations. Additional photogrammetric rays offer redundancy in the feature definition and hence they 
can increase the reliability, but the additional rays do not contain additional information needed to solve for the 
resection. Since the resection of a frame camera requires six variables, and each observed line JL offers two 
condition equations, space resection then requires a minimum of three straight linear features 1L . Caution must 
be exercised to avoid degenerate cases. For example, using three parallel lines JL will not give a unique 
solution. Also if three lines IL intersect at a common point, then this point can move along a line connecting it 
to the perspective center while its remains unchanged. These degenerate cases, as well as others. do 



liP-eli = 

Note 



(3.5) 
IIP-CII=r 

(P-C)oll = 0 

This method can be very powerful. but unless it is necessary to carry the intersection points P for some other 
additional constraints the intersection points P should be left out of the model to reduce the number of equations 
and unknowns. This leads to a single condition equation as follows. 

\ 

" \ 
S ".r-----------~----------------~ 

\ 
\ 

\ 
\ 

\ 

P 

:c 

Referring to the figure we see that the collinearity relationship for point features is given as: 

P=L+sp (3.6) 

Note that in this expression the scalar s= 11k, where k: is the scale factor of equation (1.1), Equations (3.1), 
(3.2), and (3.6) represent five condition equations containing four additional parameters {P,s }. We will derive 
a single condition equation by determining where the photogrammetric ray (3.6) intersects the plane (3.2) and 
then use the remaining sphere equation Thus substituting (3.6) into (3.2) we obtain: 

«L+sp )011 = 0 (3.7) 

Expanding: 

Solving for s: 

s = -(L-C )°11 
pOll 

(3.8) 

(3.9) 

Note that if the photogrammetric ray p and the normal 11 of the plane are orthogonal. then the case degenerates 
to an edge view of the plane and hence pOll = 0 and )011 = 0 thus, s is undefined. Substituting (3.9) into 
the collinearity relation (3.6) we obtain: 

P = L + -( L - C )°11 p 
port 

Finally substituting (3.10) into the sphere condition (3.1) and rearranging we obtain: 

II (L-C) (L-C )°11 p II = r 
port 

This represents the photogrammetric relation of the circular linear feature C. 

(3.10) 

(3.11) 



3.2 The Ellipse: IE 

An ellipse IE may be described through the use of two foci { F1.F2 }, the length of the axis a, and 
the plane { C.ll } that contains the ellipse IE. The sum of the distances from any point P to the foci { Fl.F2 } 
must be a constant equal to 2a. For the fixed point C in the plane we choose the center of the ellipse. 

IIP-F1 1I+IIP-F2 11=2a (3.12) 

[ 
FI +F2] P--2- 011=0 (3.13) 

Solving for the intersection of the plane and the photogrammetric ray using (3.6) gives: 

_[ L- ;F2 ]o~ 
S = --"-------=-- (3.14) 

Then substituting into (3.6), and (3.12) and rearranging gives: 

[ L- FI;F2 ] o~ [ L- FI;F2 ] o~ 
II (L-Fl) - P /I + 1/ (L-F2) - P II = 2a (3.15) 

P~ p~ 

IE (standard form): { Ft .Fz.ll,a I IIlll1=I.(Fl-F~ol1=O } 

Apparently the ellipse IE has 3+3+3+ 1-2=8 degrees of freedom. 

3.3 The Hyperbola: lH 

(3.16) 

A hyperbola lH may be described through the use of two foci { Fl.F2 }, a constant 2a, and the plane { C.ll } that 
contains the hyperbola lH. The difference of the distances from any point P to the foci { F1,F2 } must be 
constant 2a. For the fixed point C in the plane we choose the center of the hyperbola. 

II P - FI II - II P - F2 II = 2a 

[ p_ FI;F2 ] o~ =0 

(3.17) 

(3.18) 

Solving for the intersection of the plane and the photogrammetric ray by using (3.6) gives equation (3.14). 
Then substituting into (3.6), and (3.17) and rearranging gives: 

[ L- FI;F2 ] o~ [ L- FI;F2 ] o~ 
" (L-Fd - p II - II (L-F2) - P II = 2a (3.19) 

pOll pOll 

lH (standard form): { F1.F2,11,a I 1I1111=1,(FI-F~ol1=O } 

Apparently the hyperbola lH has 3+3+3+1-2=8 degrees of freedom. 

3.4 The Parabola: 1P 

(3.20) 

The parabola 1P can be constructed by the use of a primary focus F, a conjugate focus F' and a directrix line 
lL : { F',~ }. Note that the line L and focus F define the plane of the parabola. Any point P on a parabola 1P is 
equidistant from the primary focus F and the directrix line lL . 

L: 

:1P 
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Now 

it is possllble 
may be used because a linear feature has of freedom such as 
feature may be used as needed. ~'vll'vAg;U, let the linear feature be described PaJranletJric~Uly 

Or the intersection 
two condition eqtxati~Dns 

any COIlstr'mnts 
normal eqll1ation.s. 

X= -f --------------

y=-f--------------------------

feature de:scrlptlDrs 
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