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Abstract 
The basic rules of the increment relationship between the weight matrixp and 
ma trix G, whe re G=Qvv. P, are gi ven, from whicn the capacity and SOllte limi t.
tion of lqcalizing gross errors by Robust oujustment can be discussed theore

tically. In order to overcome the disCUSG~d limitation, a proposal for improv

ing Robust adjustment is given by author. To show the dtscussions~an example 

for calculating the parameters of relative orientation by Robust adjustment is 
made. 

KEY WOrD: localizing gross error, capaci ty, limi ta tion, checking residuals 

Introduction 
In recent years, gross eI'rors detection and location is very attractive topic 
in photogrammetry. More andnore pi;otograj;illE:' tris ts research on r::obust-least
squnres-adjustment (hereafter si~plied Robust adj.). The method of Fobust adj. 

is using iterations computed by conventional least-squares-adjustment with 

weight function. After convergen, the gross error revealed in the correspond

ing residual ',viII be increased gradually and fro:n the magni tude of the 

resldual taken as evidence of the gross er{or directly. 

A lot or published papeL's havG stated that Robust adj. is less sensitive 
against gross errors. Up to now, however, the adjustment is still lacking in 

estimating the capacity of localizing(or eliminatine ) brosS errors theoreti

cally. From the point-review of 10calLzing gross errors, the variation of 

matrix (1 is an essential defference in adjusted resuts between,:::obust adj. and 

Can ve n tional leas t squares ad jus tmen t. Ihe pa pe [' Ln ves tiga te s t.he varia tional 

beha viour of rna trix G, whi1s t ma trix P VIaS varia te'J, whic h would be as a kG Y 

for further study the pro blems a bou t Robust ad j. , such as tile capaci ty 0 f 

localizing gross error; the limitation of localizing gross errors; 
improving the adjustment,etc. 

further 

Variational Rules of Increment Relationship Between 

Matrix P and Matrix G 

The relat~anship between the vector of residual V co~puted -after least 

squares adjustment and vector of observational error E is given by the formula 
V=- G"E 

G=':tvv .. P 
'lin' erB ~l-the v· ~ 

- 1 eC1:ar or residuals; E=the vector of observational error with 
distribution H(O, crg Jj Qvv=cofactor matrix of residual; ?=weight ·coefficient 

matrix of observations. Matrix G can also be expressed as 

G =I-AC4.T A)-lAT P (2) 
where A=design matrix; I=unite matrix 

Let N=ATpA. T=R·:P 

then 
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.. 
If weight matrix P. get increment ~p , then the variated weight matrix P will be 

p=p+~. 

r \ (~ \ (0" ) l .. , In .. \ .• 

P ::: \, Pt. ) AJ?=.:t~1 APi::: " "61• ) APi = , 61 ..... 
\ ~mJ" \ "Om~, '01 

where 

01 =incremen t 0 f Pi , i= 1 ,m 

using weight matrix ~ for least-squares adjustment, one get 

. •. . -1 AT'; 
T=R O:P=AN .J:: 

where N=ATpA=N+ON 

and AN=ATAPA= ihcernent of matrix N 
-1 -1 -1 -1 

N-l=(LJ+~.N) =N (I+AN-N ) 

(5) 

~ -4 .~ 
whereas N can be regarded as an appr~ximation of Nand N can therefore be ex-
panded in Tylor's series as fellow 

iT-I =N-1 (I-AN "N-1 + {AN. N-1,Z _( AN *N-1rl + .... ) 
T=(I-R .. AP+( RoQ)3 _ ....... ) R(P+4P) 

AG=R .P-T= '; (-1 )n(Ro~) n"G 
~1 W 

1. Variationa.L Rules (Jf [<;lements of matrix G, due to increment· of one fJlain
diag~nal element of weight matrix P 

If matrix P is a diagonal one anci only the elemen t Pi ge t an incremen t 6f • 

then the increment of matrix G is that 

From the charac L;·risti~s 0 f ma trix G, we know tha t O~gii ~1 ,and therefore 

o ~ 'i1 "Pi <1. If we take 161 1<:P1' then the series of G VIi] 1 be convergent anti 

the higher-order terms in Eq.(?) can be negelected. BY omitting the ter'ms which 
are higher than (R-AP)J ,we obtain 

AG =-81 -R· A.l1: G 

where S1 =1-'11 -61t Sign (Sl )=+ and 

(
gi1.g 11 .... g11,.g1k gl1,..g11·" gZ1;g1m\ 

61 ~' gkl"g11 ... gk1:g1k ... gk~gii "" gk1.
g

1 m , 

R • 4l'i ,G= 21 \1l11( II? -0 • >1\1k(g:13. -t) •• 1113. (~:trl)" g1m (~u:-l)1 
\gmt gil ,.. 8 m; gtk .. ilL gmi"gii ..... gm1"g1 m! 

(Sl 

Using Sq. (8) ,Eq. (9) and taking s:1gn(61 l=-, the variational relues of elements 

of matrix G in comparison with the original matrix G can be stated at fellows 

--1'he ith element of main- diagonal wi.::..l be increaseu proportional to g1k .. gk1 

while the off-diagonal elements will be reduced,and the increased value just 

equal to the sum of all the reduce~ values in absolute; 

3 161 1 ~ 
0!1611. =St (gt1-g:t1'~' Agkk=-sl.gik"'·gk1 Pi ( 10,&)' 

According~o the characteristics of matrix Qvv. we have 

--The i th row element gj1 wLi 1 be rec~uced; 
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-- T':1e i th col u:nn element '.viII be increased 

hl (j=1 j~:l i 
agij=S1 ... g1j(1·-gil) Pi p .~ 

(la, c) 

t " d above w;ll be either increased --'l'he elemen ts wi th thf: exception 0 f men ~one ... 

or reduceJ; 
161 r .' ..1-.1 

Agkt=- 6 1 gki .. gil P.1. :i> (£=1, m.. k=l. In,, k~~1) 

Because Sign ( gk1 g1t} is uncertain ty .. 

TheEq. (lO,a-l0,d.i are provided that Pi::lit= 0 

2. Mathermatical formula of increment of ma trix P and G when matrix P is 

uni ted one ( P=I) 

Whnn all observations are assumed to be of equal weight and currelation free, 

i. e., P= I, then 

00 n n 
A.G=AQ,vv= l: {-I J (R· AP) .. Q,Vv 

n=l 

The norm of matrix R. 4.lp is satified as lIR"APfll<HRtb .. ·H~U:&.<;l,because where 

R=I-~~r' O<"rij<O.5,. (i=l,m.j=l,m j~i) and o<r11 <1, {1=1,lnJ as wfcll as 'HI'~ 

t~~kG J 61 1<1 , (i=l, 1;11) therefore HAP 1!1< 1. consequently the st~ries of Qvv must 

be can'lergent one and the high -oruer terms can be negelected. To simplify the 

subsequent discussions, we t:)ke first-order terms of 4lQ,V"'l' then '!.Je have 

1.lQ,,,\TY =-(R'AJ?1"Q,V,,+RoAJ?a -Q.yy+_. +R·!1.P 'Q.",,) 

Using 89.(9) to above equation, yields 

a m 
A411=(ql1-ql1)01+q1kqk16k+j~lqjlqijOj 

m: 
Aqkk=< qk-qkk) ~+qkl Q1kol + j~lq jkqk.jOj 

m I 

Aqk1 =QklQ l1oi +qk1. ~ Q'l{k-1 )&1<:+ j~l qkjqj 1...0 j J 
The Eq. ( 11) are provided tha t j ~ ~ ~ k • 

Gross Error 

by Robust Adjustment 

As weI:.'!. know that gross errors co.n be distributed to every resieJ.ual of observa

ticns which are taken into the adjustment. In general case , it is hardly to 

reconized i.,he gross error observation from least-squares residuals directly. 

Robust ad j. is using i tera tions wi th weight func tion in order' to make the gross 

error observa tions can easy be reconized from Robust residuals. For this purpose 

, we know that the magnitude of diagonal elemeilt of matrix G related to gross 

error obsarvation,-must be rather large after iterations~ Hance, the functional 

essentiality of robust adj. is to increase the ~agnitude of diagonal elements 

related to gross error as large BG possible. For discuss on of the reliability 

of adjustment, we assume that only one of observations,i e.,observation i is 
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with gross error :1- Becaus~ O~gii~l ~ sogii should, be as near as possible 
to the value 1 after iteratl0ns. In oraer to locate tae gross error correctly, 

the coridi tioh' l1qli >'0 must be satified. We would from the condition to discuss 

how large gross error can be located by weighted iteratoon Least- Squares 

adjustment. That would be an iriteresting problem in recent years. 

Considering D. Ci1i > 0 and Eq.(11), we have (let sign6=-) 
m 

(<ti 1 -<it 1) ,611> .1:' q1k r °kl 
k=l 

where [6j 1= I-f tVj) j=l, m 

(k:::;:: i) 

:f'("V
j
) =weight function for Robust adj., Vj=Vj/tlqjj 

We know that V1=~ 1I>"i71,+Vi 
.. m 

',vhere V1=(~1 q:1k-e.'k) /tl <til ,0 f whic h standard di 'via tion is tl1-qii· 0'0 

according to the characteristics of normal distribution, the value of 

able to p:e{ ,::k,e:; :~:::: I.~q~ .{.~.~: a;:oCia ted wi th p;:-,obabili tj as 
1. - -,. e 1 es"''''~ "'0 Z - " ... - ... ~ 

where t =,r::;.! ~ "'1 ,~=significant level 

ar:d Vi=,.Jqii°'Vi±tll-qii -t·O'o, 

IVi r min::! qi!. • fVi 1 .. # i-Qil'"' t f '"<Yo associated wi th probabili ty 

Dh the oth$r hand, we have 

"Vk=CClki .vi +' Vk V) qk~\: , (k=l, m. k ~ i ) 

' .. /here I"hi ~'h .: ~ I T /,,,\ ( .. \ .... a) 
, -.' _ .... ...1.....:. ",~v, Ok" -'J:". j"''' 

-. K - K:' .. 
and can be taken as 

Ylr.=[(qkk-a.,t.l)t vo '~herefore "ie have Vk=(qki ·'7i±.j(q}:l{-q~i)t' 0'0 V) Cikl{ 

is 

1'>10S1: proced:lres of Robust adj. have been set up a critical val:..le C (1.0- 2.000) 
..;;' I ..... V,' ,-, .£.,,,.., (" , , ........ I J ~ 0, UJ=U. vonsequentJ.Y, there are only several per-cent 'Neignts of 

observa:ion are reduced, of wnieh ~j are grea1:er than C caused by relative 

lar$8 val ue Q f Iq~il andlor It I • 
We take rVj/aJ .... 2, (j=1 ,m) as weight function for discussion, then '.'le get 

fVil > j<qii-qli7( k·~_1.ql1t/ "Vkz,.)-l =. (Qil-qIi)(' i Qkk/(~ -\- ~jn-1 (14) 
~=l(~~i) i K 

a_ka: 
'.'fhere ~.:::: (-.- ~ 1) t j el' 

k qki 0 of which ~agmitude , in general case, is more s~nall 

as compare with'?'1 in the denominator, and alowable to be re9laced by a 'mean 
1r,:!:]_lnA.T ' f~"y- (y,:r~rrom.p th,p ..4;+'"'~""_"lJ..y 1" l ,. ~ .... v_. __ .... _..J _ _ • __ ~ _ w._'-" ..... .l..l. ..... I.. ........ l.· 0 a ..... georlca.eauct1.0n,towhichweassll.1l 

that - r -a. '1.11 • r 
qkk=m- ' qki = m- = ill1 

m 
r=!: 'lkk 

k:::.! 
a:nc:. - -:I 

qkk' qki ' 

and 

i is tae average value of 
respectively. 

Therefore we have 

:f' m ,----:-----.,..-:------
1-v1.I> (Clii-qU.)(. ~ ClRk/( vI -I- 5~ n-1 ::: j ('1.11. -qi1) (~t +50-;) / (r- Cit1) 

it-l( ~ ~ i ) 

In order to estimate the capacity of localizing gross error with hign probabi

lity, we take that 

r-V 3.. f1:11 n>1 (qu. =qi1)'( 71 .;. 5(1;) I cr-qii,) 

Then '£'1U'. I.vi t -) ('1u. .... q li) (1 + 5'o;)/(1-Qu.' > " 1-'111 .. Jt r· 0'0 
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~ 
associated with probability l-y 

the value of v computed with Eq.(15) and associated with proIn this paper, 
0( ll' s ted l' n the ·table ( 1) are taken to discri be the capaci ty 0 f bability 1-2 

localizing gross error. 

In Robust adj. the observa

tions of which residual is 

greater than the 'critical 

value' , haveopportunites 

to be revalued. If the main 

-diagonal elements related 

to gross error is increased 

T:able( 1) The cap,aci ty of localizing gross error 

Iv~t 1.28 1.64 1.96 3.29 
~_1-.!:!. 90% 95% 97.5% 99.95% qii ~ 

0.6 2.5 2.-9 3. :;- 5.0 r=3 
0.5 3.1 3.6 4.1 6.4 
0.4 3.7 4.5 5.3 8.2 
0.2 7".6 9.0 10.5 17.0 

in first iteration, then the residual will be converged to the corrected value. 

It should be paint out, however, that the suitability of the capacityof local

izing gross error as table( 1) are limited in the observations of lflhich residual 
are not heavity correlation. 

The limitation of Localizing Gross Errors 

By Roubust Adjustment 

This problem is concerned with many factors, such as geometris strength of 

system, redundant nurnberof observation,number of gross errors, magnitude of 

every gross error and their distribution in the system. It is diffcult Lo dedue 

a sophistiated err?r analysis of the limitation in cunsiderations of all the 

factors mentioned above, we have already know that the most serious factor for 

localizing gross errors is the correlation of residuals. In this paper, we 

would restrict the discussions in observation i and observation k of which 

residuals are heavity correlated. 

,. The '/ariational prQpe:r"tie~ of elements of submatrix (q11 Cl1k) in matT'ix~vv 
Qk1 q kk. -

Assum that Iqlkr=fqklf;>ql1 01" qkk, and <ilk or Q_k1 is the largest value in 

absolute of off- ~iagonal elements ith or kth row respectively. Furthermore, 

the observation iand/or k is with gross error and with rather large residual 

after leas t-sq uares- adj us tmen t. We would concen trfJ te on the termG" re i.a ted to 

°1 and ok:, and negelec te the terms in Eq. (11) for disc ussion. Ln any case, for 6
1 

and ok, there are only two circumstances,i.e., 01 =6k or 61~6k to be taken in 

the disc usi on. Firs t- takes that 6 1=0'k=6 and sign:: -. from Eq. ( 11 ) ,we have 

~qtt";( q11- q1i -q1k) r6f, Aqkk~( qkk-<lkk-qkl) 161 
Aq~q1ktl-{q:tl.+qklrlJ r61·~· Aiqk1;:;qk1<1-(qii +ttkk»f6' 

From above, we know that the element of the submatrix will be variated as 
fellows 

-- The two main-diagonal elements qii' qkk will be increased, of which magni tude 
are not difference too much; 

-- The magni tude of off-diagonal elements qik' qik increasing or reducing depends 

on whether q11+qkk is smaller or greater than 1; 

If lq1.kl=rQk11=qt:t=qk1V, the rE1sults of iterations with reduced weight must 

be 19j.k f :: 19ki I=lg 1 1 f=gkk< O~S 
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because gii+g kk=q11 +qkk+Aqii +'41qkk=2 'l11 +2 (Q11"'2Ql1) 16 1, (q11 + qkk' ~l and 

Ie i<l S8 gi1+gkk < 4 (q11- q1i )max=l • Then 1;1[8 get 

i gikf:: f gkil=g11, =gkl{<O. 5 

7he second case, we takes th8t 61~bk • From Eq.(r1), we have· 
__ The larger weighted increment the larger the increment will be of related 

the column elements. The conclusion is approximate for main-diagonal elements, 

and can be learnt from the formula as fellows 

Aqik-A'lk1~q1k(r6it-'6kb 

Aqii -Aqkk~qlk( ;oi r-1 6k f)+,(q:11- 'lhl-('lkk-'lkk) r~l 

The variational properties stated above is not exact true because the discuss

ion is base on the first order of the ser'ies of tictvv, whereas it is enough pre

cision for analysing the limitation of localizing gross errors by Robust adj. 

2. Typical mislocalizing gross errors 

Under consider'J.tion of the condi tions , I q11!: 1= r qki 1 ~ q1i or <lkk. , especially 

Cl11;:;Clkk the grOGG error whether take place in observation i and/or k, revealed 

in the resiuali and residual k is not defferenc9 too much. In addition, the 

residual i and k. is still consisted observational errors. As result, the 

relative size between the least squares residual i and residual k is arbitrary 

at all. With the help of theproperties discussed ahove,it is not certain that 

the iterations must be converged. to the correct value,i.e., Robust residual with 

large magnitude taking as evidence gross error observation is unrelibility. 

There are three typical mistakes of localizing gross errors as fellows 

(a) 'InterchangLng gross error 

Assuin that observation t is vJith gross error 71 ,for localizing gross error 

correctly,the condition,i.e., ~ql1>rAqkif~ must be satified. OtherWise, the 

residual k will be greater than the residual i in absolute value, and makes 

mislocalization of gross error in observation k after iterations. This mistake 

in. gross error location is so-called "Interchanging gross error" 

(b) 'Distracting gross error' 

So-calle,d "distracting gross error' is that the gorss error 71 was dis tracted to 

the residual i and residual k after iterations. In the result, gross error 

location either reduces the capncity or maJ\8s mistake. If qii < tq1kt ,the 

mislocalizing as(a),(b)wi.Ll probably be occured. Mevertheless,aft€')l' iterations 

the magnl'tude of elements of sublnc:"trl' x (!S1i t gik\ Id b . ~ \gki gkkl wou necessa,ry e lncreased. 

The gross erors, therefore, revealed in residuals will be more prominent in 

comparssion with conventional leGst-squares -adjustment, and the capacity of 

detecting( not locating)gross errors would, of course, be improved. 

(c) 'Hidden gross error' 

If 1"V1 1=jV"kl"qii=C!kk,and S1gn(V"i °'Vk >::':=S1gn.lQik), the gross errors have small 

influence on the residuals wi th the resul ts tha t there would be hardly any 

means of detection and locating them. This problem is so-calle "hidden gross 
error' • 

Cd) "Cbecking residuals'programm 
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The typical mislocalizing gross errors mentioned above is impossible to be 

over come limi ted in the condi tions, fOil < I 9 i =1, m • These problems can 

only be solved by re-adjustment with weighted zero to observation i and obser

va tion k simultanersly, i. e. , 61 =Ok=-l , to which we will re fer to as 'Checking 

residuals'programm. 
Ig11 g1lt\ (1 0\ ., 

The elements in the submatrix must be as \.:gk1 gkk) = \0 1.} , and resl.dual ]. and 

residual k are no longer correlation after run 'Checking residuals'programm. 

For any two observations of which r~~~~~?~~.~~~.~~~!~~~.~~~~~~~~~~.!.~~~.?~~ 
•• • .: ••••• eo ••••••••• :~~ • weighted zero must be' done to tht:?m imperatively 

of which resl.dual has large Sl. ~ .................. 0I ••••••••••••••••••••••••••• . . . . ... . . . . . . . . . . . . .. . . . . 
JI .," ~h~~ 'r~n 'Checking residuals' programmm. 

It ••• , • , " rI. • ••••••••••••.••• ,., ........ - '-' • ;. " 

Examples of Robust Adjustment 

1. Simulated data for adjustment 

CalculatinG the parameters of relative orientation are taken as an example of 

Robust adj. , where includes 10 simulated observations(vertical parallex). The 
observational error vector is 

E 1"=< -1. 0 0.6 1. 0 -0.70.1 -0.2 -1.0 -0.9 1. S. 0.9), C!o=0.89 

Moreover, this example is especial to lay emphasis on the limitations of 

localizing gross errors stated above. 

2. Weight function for exam_pIe adjustment 

The weight function proposed by author has been simplified for this experiment 
as fellows 

'Hhere 
c=2, a=l for first and second iteration 

c=3, a=3 for after iterations 

3. Results of adjustment 

Q8) 

The rcsul ts of adjus tmen t wi th weigh t func tion as Eq. ( 18) are lis ted in 
table(2)- table(4). 

4. Remarks on the experiments 

From table(2), we know that gross error can be located with theoertical 

capacity as table(l), if the residuals are not too heavity correlated. While 

the carre la tion coe f ficien t be tween resiu ual 1 residual 2 eq uals 1, i.e.,/'~t 1 , 

the ~ross Error in observation 2 could not be located correctly; 

--From table(2), furthermore, know that tnislocalizing as (a),(b) and (c) are 
appeared when observation 1 and/or obnervation 2 with gross error; 

-- Fro~ table(3), we know that th~ mislocalizing gross error as same as 

table(2) are appeared. In spite of the residuals between observation 3 and 7 

is also heavity correlnted , however, the gross error in observation 7 can be 
loca ted COr ['ec tly, because CL77> I q37 I 

-- From table(4). we know that gross error in observation 5 is mislocalizing 

because QSS< /Q S91; 
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Table 2. Experiment in the capacity of localizing gross error 

L!~J,I_.J_._.t. __ ._2_ .. ~_._._~.-1_2_ ~_J __ 4 __ , _~._.I_ .. ~~ __ . __ ! __ ._~ __ L_8 _J __ 9 -.~-1 
I v ! -4 i -0.8 i: -1.0 1 -9 3· . -5 : 5 ! -5 I -6 ; - 3 ! 3 I - 3 I 
r--v--r";~~[1 -3.4 f 3.4 I -4.3 4~0 1~' 4.5 i 4.0 (! 2.4 II' -3.3 I 3.2' i 

r~:-=r L.. 7.2 '! 6
1

'2 \ 3.8 ' 
r . . 

3;. ··--·~4 t - f.ach adjustment with one gross error ., 
! 7 81 i -V"o='T'he smallest gross error can be loea ted' 

j 
:.R -lZ. -.13 .13 -.i3 .13 -.38 .OS -.OS .OS 

- . 37 .37 .13 -.13 .13 - .13 .08 -.38 .08 -. 08 
-.13 .13 .43 .~7 .05 -.05 -.44 -.06 .03 <03 

1 .13 -.13 .07 .43 ... OS . OS -.06 -.44 -. 03 . 03 
I, QVv ".13 .13 . OS ... OS .43 .07 .03 -.03 -,44 -.06 

i· associated with probability 90·95~j .• 
! .13 -.13 -.05 .05 .07 .43 -.03 .03 -.06 -.44 • ---- r 2 ;-- I=Tterchanginfi gross error 
! -.08 .08 -.44 -.06 .03 -.03 .04 -.14.02 -.02 f)=Distracting groRs error 
I .OS -.08 -.06 -.44 -.03 .03 -.14 .64 -.02 .02 '9 10: H=HLlden ~ross error 
! -.08 .08 .03 -.03 -.44 -.OC .02 -.02 .b4 - .• '4 ::;. e', --__ •• 01" C nIt tl ./ = ',ross error oca od correc Y J 

.08 -.08 -.03 .03 -.06 -.44 -.02 .02 - .14 . b-4 f f .. t 1 2 . , _____ .. '____ _ ________ .......... __ ....:-~~rrel;.l te coe IClen , =! 

1 Iterati~g with weight function I 'Checking residuals'programmi 

G;-----;T~l· ! Vz. I Gross error location L_.Vi. ; __ T~::._.l_!~~_~~ error location _=-! 

~~~Lil~~~~~~·=~:~~~~ll:~+~f ~i~~·~-~-·~---l------~ 
.t":~..J·..J IV.~ ...... i "",e_ _ _________ ..J..._'_v_._~_...\\ ____ .l._ ___________ __' 

Tab=..e :;. Adjustment ~ith t~r2e gross errors 
'-'-""~'~'--------"----"-- .. "-.. -,,,,'.-..... -.• -----.---~-.~----- ,- . --,_ .......... -.. "-" ... -",-.---,,,.,-.-,-.,.-.~.-----,,' .... --'----------, 

.,... J.. • • , • ....c-. ' !,....... ~ ~ .,......; , S' "... 0 -;....J 1 l.-. ' ~ , ~...... +..... :1. l ... erC1.tl~'1g ',~r2_tn v:elght .l.urlctJ..on h '..I~~ecl.':..-,-!lQ ... ~s~vua~~/rogrct.drnJ 
---::;-:---~--·-Tl-:_;:__T-TJ ",ro."'''' error loca tl' on I ,[ .. '[ I ~ error' ocatl' nn I v1. 'V:1,' 'V, Vj , 12 I? ~~ ! 'i I:',. . 7 i uross J....J i: 
_ ... -_ .... ---- .. - ~.- --....---.---j_ .. _-- - ----~~------~--------- -'-"-, --~~~--'.-.:__.- """' ..... _-- 1 

10.0'-c.6-1O.C'-5.214.C 110,61,2 n 7 C j-9.:";-·C.4 :10.1 .. 1,2,7 c 

':~~:;rf::::t:dH:~"fr~~'F=+=~F-l;~T)·:~-i~~- ::::: ~ 
'. i C). c: 1 O. J - i O. OJ 1 Q. 71-8 • 3 L' 7. 9 j :,2 • 7 C ! 1 0 • J t ·1 ,J. 1 I 8 .4. 1 ,2, 7 C 
! -- f .. . 

I 1,J,'IV 

L 

.~e -.J"': -.:'6 .!4 -.11 .:'3 -.1.3 .~8 -.j7 .CS 
-.36 .35 .il> -.i3 .11 -.12 .10 -.08 .01, -.a8 
-~ .. lb ..:.1L .06 .05 -.06 ~-.Ob .03-.03 

.14 -.:'3 . Oil .43 -. V-4 . OS - U7 -.44 -. a2 . 03 
-.11 .11 .as -.04 .42 .~8 ··.~3 -.32 -.45 -.~5 

.13 -.::: .-.06 .05 .OS .43 -.03 .03 -.OS -.44 
-.:U .10 -E-.~7 .03 -.03 ...l.:..-.!4 .n -.02 

.Oil -.as -.06 -.4-4 -.12 .03 -.l4 .63 -.01 .02 
-.07 .Cb .03 -.02 -.45 -.as .n -.D1 .63 -.i3 
.~s -.~a -.e3 .J3 -.05 -.44 -.n .n -.~3 .64 

~ 
3 •.•. __ .• 4 f 

f? 8! 
I·' i 

21 
5~} ___ 1~ 6 

Table 4. Adjustment with three gross errors 

Iterating with weight function 'Checking residualS~programm~ 

. .1.\!. -.36 -.18 .14 -.11 .13 -.12 .08 -.06 .08 i M 

-.36 ~ .10 -.13 .10 -.12 .11 -.07 .OS -.07 •• ---.'.'4 /'5,)=0.385 
-.1£:1 .16 .46 .OS .05 -.06 -.42 -.06 .03 -.04 3 t'7 8 i ..p 

.14 -.13 .05 .43 -.04 .os -.07 -.44 -.02 .03 I :. ./ 1,2=0.991 T 
-.11 .10 .05 -.04 .41 .08 .03 -.02 -.45 -.05 1 ~~,~ 2 iThe ober-vation 5 ana 9 have not been weighted! 

.13 -.12 -.06 .OS .08 .42 -.04 .02 -Ts -.44 ~'I 
-.12 .11 -.42 -.07 .03 -.04 .6S -.14 .02 -.02 J . :.1 zero when run 'C'Iecking residuals' prograrnm • i . 

. 08 -.07 -.06 -.44 -.02 .02 -.14 .63 -.01 .02 9.10 i ! i 

-,Ob .OS .03 - 0" - ~r: - nr: n'. _., L"I - ., 500 __ - ... ,6 l j 
, __ ~----.O_8---._07 __ -_.U_4~.G_·J_--.-os---:-~-4---:~_2 __ :n_u2_-_:_~3 ___ :6_3 ________________ _L,_______ . 
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__ From table(2 1-table(4), we know that mislocalizing gross errors as (a),(bJ 

and (c) can only be solved by running 'Checking residuals'programm. Besides, 

ta ble (4 ) show that !!l.islocalizin g gross error still ha p pe ne:::f , because the 

observation 5 and 7 have not been weighted zero, when run 'Checking residuals' 

prog;amil1; 

-- The most danger is so-called 'Hidden gross errors: In this example, gross 

errors are vai nsed in tile adj us ted resul ts, and impossi ble to be detec ted from 

the ref;i.! ules. Fortuna te ly, 'Hidrlen gross errors' is not frequency in prac tical 
adju.stment. 

Conclusions 

The rules of increment relationship between the weight matrix P and matrix G 

would be a powerfull tool to study Robust adj., by which an ~pproch to 

estimating the theoretical capacity of localizing gross errors by Robust adj. 

has been made and some mislocalizing gross errors in practical adjustment can 
be explained by the discussed limi ta tion 0 f localiziIlg gross e rrOl'G and 
ovp,rCO(~lG by so-called 'Checking residuals' programm. 

Despite the fact that the limitation of l.'calizing gross errors could not be 

overcome by weight function rcductin8' weight for observations in general way. 

Nevertherless, the gross errors revealed in Ule Robust residuls will be larger 

remarkly in comparision with least squares residual and tne capacity of 

detectins (not locatine;) gross errors will, therefore, be improved. It should 

be required that all the element in matrix Qvv have to be calculated for 

further improving Robust adj.. frottO Lhp point-review of the adjustment wi th 

large-scalI equations ,for instance photogram:nmetric block adj., tne computional 

effort will be increased appreciably. It is necessary further studies in the 

limitat~on of localizing gross errors, from which one could mak~ intelligent 
prograulms by v:hich the I't::sults of adjustment would. possibility be free fro:n 
the studied limitation. 

Final Remarks 

The investigations discussed above are base~l on the weight matrix P is united 
on~ • However, it is easy to be extented to thnt weicht .natrix P is doagonal 

or correlational one by helped the conc~pt of so-c~lled '8quivalent residual' 

and 'Cofactor matrix of equivalent residual'. According to the appendix, we 
have 

~vv=W.G-W-l,V=W.V 

Where 'T'·V = vr'W=?, \ =a sq Uare no-si ngular rna trix, q vv= co fac tor m<;l trix 0 f eq ui valen t 
residual, V=equivalent residual. 

If P is diagonal matrix, then Qvv ana V can be simplieJ as fellows 

All the cUHclusi::ms discussed abuve in this papeL' are suitable for ~vv and V, 
because Qvv and V have the same characteristics as Qvv and V respectively. 

Where Qvv and V computed with P=I. 

1 



Appendix 
r,1a trix P is symec tric posi ti ye de finite, a nd always dec omposabl~ into a preduc t 
of a square no-singular matrix Wand it's transpose ,i.e., 

The vector in Eq.(1),Eq.(2) multipliec: by matrix W from lefL side, we get 

W "V=-(I-W ".8.<. (W "AJ Trw -A}) -1 (W"A) T Of .. :m) (A,l ) 

Let 

(A,3 ) 

Where Q,vv=I-A(X:rX)-l.iT 

and Q,EE=W .. p-l -wT=w "W-1 (WT, -lwT =I 

furtherm ore, one get 

(A,5) 

(.A~ 6) 

Where V and Qvv is refered tu 'P.quivalent res:LduaJ.' and 'Cofactor matrix of 

equivalent residual' respectively. It goes without saying that V and ~vv have 

exactly the same characteristics as If and Qvv respectively, where V anli Qvv 

are computed after least squares adjustment with P = I. ,';ume problems of 

adjustment about observations with weight matrix containing unequaJlyaccurate 

and c01.Telated elements can easy be sol'JCd by so-called "Equivalent residu;ll' 

and 'Cofactor matrix of equiv~lent residual'. 

ReferenC83 

( 1) Arner, F : rrheorr; tional Relia bili ty 0 f P-leme n tary Photograrnme tric Proc edure 

ITe Journal, 1981-3 

(2) Stefanovic, P.: Blunders and Jeast Squares 

rrc Journal, 1978-1 pp 122-15L~ 

(3) Wang Renxiang : Studies on weight function for Robusted iterations 

ACTA Geodetic,'::t et CcJ.rtograph.Lca Sinica Vol. 15 nu.2 1986 pp 91-101 

(If) "Nener, [-{. : Automatic Gross ErTOI' Detection by Robust Esti.Ilates 

ISPRS 198Lj COrTIiflsi.;n I I 3b pp 1 1 ()1 -11 08 

715 


