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Abstract: Tracing of corresponding phenomena (matching) is necessary in many applications, 
like image sequence analysis, aerotriangulation and 3-D geometric information extraction from 
stereo pairs of images. An important industrial application is robot stereo vision. In digital 
images the correspondence problem can be approached by signal, feature or relational matching. 
Common, at the moment, is the signal approach. Because of its limitations more and more 
image structures (features) and their mutual relationships are used. The aim of this paper is to 
review the current stereo matching techniques. 

1 Introduction 

Collecting information about the real world by 
means of images is already for a long time well-accep­
ted and widely utilized. There is no unifying theory on 
which automatic information extraction from digital 
images can be founded. There are concepts which work 
well for some vision problems, but they are not general 
enough to be appropriate for other applications. The 
lack of theoretical foundation has, among others, led 
to an overwhelming diversity of approaches to tackle 
the correspondence problem in matching of image 
sequences, both by the computer vision community and 
the photogrammetric community. The aim of this pa­
per is to order and review the existing diversity. 

Matching is a very general notion to select corres­
ponding phenomena in two or more observation sets. In 
advance, it is unknown which phenomena in the one set 
correspond to the phenomena in the other set. Corres­
ponding phenomena are different mappings of the same 
object phenomena. Moreover, the counterpart of an 
element in the one set may even be absent in the other 
one, and reversely, i.e. the relation is not bijective; 
elements of the one set may be mapped into the null­
space of the other, and reversely. Contrary to classical 
mapping no transformation is known; it has to be ad­
justed. This causes the correspondence problem to be 
severe. 

In stereo and motion vision matching refers to 
identifying corresponding visual phenomena in image 
sequences, caused by the same phenomena in object 
space. This survey is devoted to the reconstruction of 
surfaces from stereo images. There are other passive 
methods to extract 3-D information from mono ima­
ges, e.g. shape from (1) shading, (2) texture and (3) 
focussing. Also active ranging, using laser and radar, is 
employed. They all are out of the present scope. 

The purpose of stereo vision is surface recovery of 
3-D object space from conjugate image pairs. It pro­
duces a m ore quantitative depth determination than 
the passive mono techniques. Its passive state makes it 
more generally applicable than active ranging (Medioni 
and Nevatia, 1985). 3-D surface description lies at the 
basis of a structural description of the real world. It 
allows, for instance, the compilation of orthophoto's 
from a single frame or a 3-D impression of spatial 
mono images (e.g satellite imagery) by superposition. 
In industrial applications a 3-D surface description 
defines the entire object structure and real-time pro-

cessing plays a bottle neck. Digital photogrammetry 
applies matching techniques for the determination of 
Digital Elevation Models (OEM) and point transfer in 
aerotriangulati on. 
The problem of stereo analysis consists of the follo­
wing main stages: 

1 extraction of phenomena (i.e. elementary descrip­
tors or tokens) in both images; 

2 selection of corresponding phenomena and compu­
tation of their object space coordinates from 
triangulation; 

3 interpolation to arrive at a full 3-D surface des­
cription. 

Following the terminology of Marr (1979) these steps 
lead respectively to (see also fig. 1): 

- the primal sketch; 
- the 2 ~ -0 sketch; 
- complete surface description. 

Since the 2 ~ -0 sketch resembles a OEM, i.e. a 3-D 
point field (X, Y, Z)-coordinates), it may be stated 
that, in general, the photogrammetric task is comple­
ted after determination of the 2! -0 sketch. To ac­
quire the 2! sketch from disparaties, a camera model, 
that is the exterior orientation of the stereo pair, has 
to be known. Matching is the key step and in course of 
time a variety of approaches are developed. A first, 
broad subdivision is obtained from the manner an 
image may be looked at: 

1 as signals, i.e. a 2-D spatial distribution of func­
tions of E.M. intensities; 

2 a set of features. 
The first view is the classical one and frequently ap­
plied. It has the advantage of being fully compatible 
with the well-defined and thoroughly studied concepts 
of signal processing, in particular the digital variant. 
Especially radiometric restoration, enhancement by 
smoothing, and edge detection gain profit from a sig­
nal approach. Corresponding phenomena are identified 
by correlation techniques using neighbourhood of 
pixels. As such, signal matching may be regarded as 
the digital continuation of the analogue approach, 
using cathode ray tubes, introduced by Hobrough in the 
late fifties. 

Ullman (1979) notices two objections against signal 
correlation. 

1 A correct match is only yield in the very simple 
case of shift; 

2 Grey value distributrions don't correspond to phy­
sical entities. 

Actually, (1) refers to geometric transformations and 
(2) to radiometric transformations. Regardless whether 
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Ullman is right or wrong, currently the developments 
point from signal matching to feature and even to 
relational matching. 

Regarding an image as a structure is the most na­
tural way to do, because structures is what one wants 
to describe. The treatment of an image as a 2-D signal 
is just an attempt to get there. The feature approach 
didn't enter computer vision until a computational 
theory of human vision was developed by Man and co­
workers (Marr and Poggio, 1979; Marr and Hildreth, 
1980; Marr, 1979; Grimson, 1981). The observation that 
random dot stereograms, which have no structure at 
all (see fig. 2), are perceived as depth images by the 
human visual system, did Marr and co-workers decide 
that in the process of stereo perception not first mea­
ningful structures in the individual images are detec­
ted before junction to stereo impression, but that just 
elementary tokens are detected (the primal sketch). 
This approach leaves behind the earlier insights that 
the human visual system matches at a higher, that is 
structural, level. The lack of success of the feature 
approach has led to a revival of the structural ap­
proach or more often called, relational matching (c. f. 
Shapiro and Haralick, 1987). In this approach image 
structures and their relationships to neighbouring 
structures are described by a symbolic representation. 
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Fig. 1 The three stages of the correspondence problem: 
(1) extraction of phenomena, (2) selection of corres­
ponding phenomena and (3) full 3-D surface description 
by interpolation. Both stereo vision and motion vision 
are indicated. 

Based upon the above considerations three classes 
of matching can be distinguished: 

- signal matching 
- feature matching 
- relational matching. 

Signal matching is often referred as area-based mat­
ching, but this term doesn't express the principal no­
tion of its background. The classes are treated in de­
tail in separate sections, but first some general notions 
on matching are outlined in the next section. 

2. General considerations on matching 

The foundation of stereo vision is the recording of 
an object space from slightly different view points. 
The difference in positions causes disparities and frorn 
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triangulation, using the exterior orientation, 3-D ob­
ject coordinates are computed. By interpolation the 3-
D surface structure can be recovered. So, the three 
main steps in any stereo vision algorithm are (see also 
introduction): 

1 Detection of items or phenomena. 
2 Matching and calculating depth. 
3 Surface recovery. 

The phenomena may be: 
1 non-local O.e. neighbourhoods of pixels) 
2 local (e.g. edges and blobs), 
3 locally extended (e.g. line segments and areas). 

Fig. 2 Random dot stereograms give 3-D impressi?n. 
This discernment is the foundation of feature matchmg 

A non-local item consisting of the grey values of a. 
neighbourhood of pixels is a target area (also the term 
mask is in use), a local item is a feature and a locally 
extended item a structure. So the above subdivison of 
phenomena defines broadly the three types of mat­
ching mentioned in the introduction. Once items are 
detected in both images the correspondence problem 
has to be solved. First of all similarity measures are 
necessary, which depend on the description of the 
item, e.g. in case of a non-local item a correlation 
measure is suited. But, a similarity measure gives only 
a local match, no global consistency, since no simila­
rity measure is immune to misinterpretation. They 
will, in general, not lead to unambiguous matches. So a 
global match is necessary. The ambigui ty causes, what 
is called, the false target problem (Man and Poggio, 
1979; c.f. Marr, 1979; Crimson, 1981), i.e. an item in 
im8ge 1 may match equally well several items in 
image 2. Fig. 3. shows an example, following Man, 
1979. Each circle Li' i = 1, .e. 4 is similar to any of the 
circles Rp i = 1, ••• 4 in the conjugate image. A priori, 
any of the 16 possible matches is reasonable. When we 
match L1 with R4, L2 with R 3, L3 with R2 and L4 with 
f-<"l' the circles are seen in a vertical line, but the 
human visual system never perceives this match. It 
prefers to make the correspondence between L1 with 
R 1, L2 with R2, L3 with H'3' and L4 with R4• That is a 
plane, shown with the filled circles. So, humans prefer 
the most simple match. 

The most likely solution can be found when infor­
m8tion about the plausibility of different matches is 
available. So, an object model and additional informa­
tion, like [Tlaximal dispari ty are indispensable to decide 
which rnatches are correct. Two physical condi tiona 



are relevant to constraint the matches (Marr and 
Poggio, 1979; c.f. Marr, 1979; Grimson, 1981): 

- A given point on an object surface, has a unique 
position in space at anyone time; 

- Matter is cohesive, it is separated into objects, 
which surfaces are generally smooth, i.e. the sur­
face fluctuations are small compared with the 
viewing distance. 

The above has brought Ullman (1979) to the formu­
lation of the minimal mapping theory, which states, 
roughly, that the matches which generate the simplest 
surface, are the best. In photogrammetry, planes are 
taken as surface model (Forstner, 1986). 

Fig .. 3 The False Target Problem of stereo matching. 
The circles in the one image can match equally well all 
circles in the other image. 

The correspondence problem is constrained by three 
conditions (Marr, 1979): 

1 Compatibility constraint: if two elementary to­
kens could have arisen from the same object item, 
they can match, else they can not match; 

2 Uniqueness constraint: each elementary token in 
the one image can only match one element in the 
other; 

3 Continuity constraint: disparities vary smoothly 
almost everywhere. 

There are four main factors responsible for the grey 
values in an image (Marr, 1979), (see fig. 4): 

- illumination; 
- reflectivity; 
- geometry; 
- viewpoint. 

To achieve unambiguous matches all four factors 
should be known in advance. However, only the posi­
tion and attitude (i.e. exterior orientation) of the 
viewpoints and the illumination source(s), are, in gene­
ral, known, and, moreover, the geometry of the object 
space surface, that is what we are looking for. The 
reflectivity of the surface is generally also unknown. 
Because, except in cases of perfect Lambertian reflec­
tion, O.e. the reflections are in all directions the same) 
the geometry affects the amount of light that arrives 
at the view point, even when the surface reflectivity is 
known, no unique image grey value distribution is de­
terminable. 

Marr and co-workers evade the reflectance pro­
blem by deriving primitive features, like edges and 
blobs, from the images a priori to matching, assuming 
that they are independent of surface reflectivity. This 
approach leads, however, to many possible solutions. 
To limit the solution space, an object model is neces­
sary. Marr and co-workers use the model of simplest 
surface. 
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Signal matching doesn't allow surface reflectivity 
ignorance. Commonly, implicitely or explicitely, a 
perfect Lambertian reflection is assumed. Grey value 
correlation is limited to image pairs with only small 
perspective changes from one view to the other, i.e. 
the base-to-height ratio is small (cf: Hannah, 1974), 
assuming Lambertian reflection and just a shift be­
tween the two views. The shift assumption is valid for 
sateHi te images, gained by Landsat and SPOT, but in 
close-range photogrammetry it doesn't hold. The least 
squares matching (LSM) approach requires an aprroxi­
mate surface model, gained e.g. from prediction from 
previous measures or from feature matching perfor­
med in a preprocessing step. The approximate values 
have to be very precise, even such that for many ap­
plications the approximations are good enough as the 
final matching result. So, LSM is actually a fine cor­
relation method to bring the known matches to a 
higher precision level. 

Let us now describe the above mora formally. Let 
pO be the set of ite.r;s or phenomena p. ,i = 1, or h in 
object space. Let P be the set of phendmena p., 
i ;= 1, .. , k in the first image20f the conjugate pai1r and 
p2 the set of phenomena p., i = 1, .. , 1 in the other 
image. The nature of imagin~ causes that the number 
of phenomena in object space, images 1 and image 2 is 
different. Let us call the phenomena which are presert 
in image 1 but absent in imagez2, the null space of p 
of image 1. The null space p of image 2 is defingd 

. I 0 accordIng y. 1 
The tas~ of matching is to select for1each p £ one 

and only p. ,under the condition that p. 1Jld p. are' 
mappings of the same object phenomenonl p .• Toleach 
image phenomenon a set of property attributes A con­
sisting of the elements ap i = 1, .. , m, describing some 
properties, can be assigned, e.g. mean grey value grey 
value variance, length, shape, area and elongatedness. 
Further, to each image phenomenon a set of relational 
attributes R, consisting of the elements rit i = 1, .• n, 
describing the kind of relationship with the neigh­
bouring phenomena, can be assigned, e.g. above, 
beneath, left, right and nearly. 

~point 

object 
~ ____ geometry 

Fig .. 4 The four main factors responsible for image 
grey values. 

The attributes are, actually, derived from the grey 
values of the pixels a phenomenon is built of or/and 
the neighbourhood. So, the most simple description of 
a phenomenon is just an image patch, f .i. a 5 x 5 
window. The shape of the patch can be regular (e.g. 
quadrangular and rectangular) or irregular. The most 
simplest way of phenomena selection is by covering 
the image by a regular grid and to take patches at the 
intersection lines. This approach may cause that also 



patches are taken with a smooth grey value function, 
i.e. unsuitable for matching. Therefore, often the 
images are preprocessed to find pronounced phenome­
na like corners and blobs. Hannah (1974) selects re­
gions with a steep autocorrelation function and 
Moravec (1977) employs a directional variance evalua­
tion operator. 

An image patch consists of the original greyvalues 
G with elements gj , i = 1, •• , n, n the number of pixels. 
From the above follows that each phenomenon can be 
described by G, A and R. All three sets are employed 
in the matching process. If just G is used, signal mat­
ching is performed. Feature matching needs the set A, 
but doesn't exclude G. Relational matching needs R 
and may also make use of G and A. 

3 Signal Matching 

Neighbourhoods of pixels, G, are used. The sanI­
larity is indicated by the resemblance between grey 
values. 

The simplest method is to take some statistical 
measure, f .i. cross-correlation, to shift the target 
area, defined in the one image, over a search space in 
the other image, and to compute the correlation func­
tion (see fig. 5). The size of the search space depends 
on how well the exteri or orientation is known and the 
possible height differences. The mid-pixel of the tar­
get area and that of the most similar search area are 
taken as corresponding points. The similarity measure 
should exceed a threshold. 

Another approach is to define the unknown corres­
ponding coordinates (xs' y s) in the search area directly 
as a function of the grey values of the target image Gt 
and search area Gs' This leads to the non-linear equa­
tion: 

With (xt' Yt) given coordinates in the target area to 
which we want to assign the corresponding coordinates 
(xs' Ys) in the search area and n the additive noise. If 
approximate values (xo , yO) are known the equation 
can be linearized to 5btai~ a solution in the least 
squares sense. For convergence (xo , yo) should not 
differ much from the exact value, Toe. ~ery accurate 
approximate values are necessary. LSM has, however, 
the distinct advantage of very high subpixel accuracy 
(e.g. 1/20 pixel size). Other geometric transformations 
than shifts can be handled too. A model to describe 
grey value differences can be introduced. 

Originally developed as single point matching 
(Ackermann, 1984; Pertl, 1984, 1985; Forstner, 1984), 
some refinements are introduced in LSM. Grun and 
Baltsavias (1987) use multiple views to incorporate 
geometrical constraints. Rosenholm (1986) introduces 
multiple point matching. A~eady mentioned is the 
approach of Wrobel (1987a, ). The next subsection 
elaborates grey value correlation and LSM. 

3.1 Grey value correlation 
Grey value correlation employs statistical i.e. covari­
ance(-like) measures as simularity measures. Let g/ 
be the target area and giS the search area in a digital 
image, i = 1, •• , n with n the number of pixels in the 
area (see fig. 5). The search area is a subimage of the 
search space. In denoting the similarity measures R ts 
between target and search area, we will partly follow 
(Hannah, 1974) where a very nice coherent synopsis is 
given. The common similarity measure is discrete 
correlation: 

(3.1) 

Normalizing R1 by the means rl and cf leads to: 
ts 

( t -t) ( s g. - g g.-
1 1 

Normalizing by the second moments: 

R.
3 
ts 

t 2 (g. ) and 
1 

L: gj 

~~ (g. t)2 
1 

1 

t 

L: (g. s)2 leads to: 
1 

s 
• gj 

L: (g.s)2 
1 

(3.2) 

(3.3) 

Normalizing by both the sample means and the second 
moments leads to the cross-correlation: 

t -t)( s -s) L: (gi - g gj - g 

( s g-s)2' g. -
1 

(3.4) 

With the property: -1 ~ R~s ~ l. 

The above measures have to be maximized to find 
the best correlation. Also in use are variance 
measures, considering: 

gi t and giS 

as two samples of the same observation set. Their 
measures have to be minirnized to find the best fit. 
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Fig. 5 

The Gaussian, i.e. root mean square error, is given by: 

~ , 5 1 t s 2 
H't = -;:: (g. - g. ) s n. I I 

1 

(3.5) 

Normalizing by the sample means: 
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The Laplacian variance measure, i.e. the sum of the 
absolute values of the differences, is given by: 

R7
ts 

=_1_ L I g.t _ g.s I 
n . 1 1 

1 

(3.7) 

which can also be normalized by the sample means: 

I ts -s -t 
L g. - g. + g - g I 
ill 

(3.8) 

Commonly, the computations are carried out using 
a standard target area, i.e. n is equql for all points, 
thus can be neglected. Therefore in Ri ' j = 5, •• , 8, n 
in the denominator can be leaved out. Sfo take account 
of the geometric differences between the target and 
search area, a weight function wi can be introduced, 
which favours the central parts at the cost of the 
surrounding portions. 

(3.9) 

This similarity measure is, for instance applied by 
Mori eta ale (1973) to match aerial photographs taken 
at a height of 3000m. In order to become a computa­
tionally more efficient expression for the cross corre-
lation 4 4 

R
ts 

the terms in R
ts 

should be rearranged to: 

t s 
L g . 
. 1 

• gj - ( L g. 
1 4' 1 R

ts 
(g. t)2 _ t 2 

( l: (L g. ) In) 
1 1 

In case of multi spectral images each pixel consists of 
a vector of m grey values: 

t s. 
g .. and g .. ,J=l, •• ,m. 

1 ,j I ,J 

The multispectral cross-correlation can now be 
defined by (cf: Hannah, 1974): 

t - t) (g.s. - s) L L (g. . - g. -
RIO i 

1,] J 1,J gj 

t 

ts 
t - t)2 - s)2 L L (g. . - gj L L (G. s. - g. 

1,] 1,] J j j 

(3.11) 

4' 
The terms can be rearranged like R • 

ts 

The search area which has the largest similarity with 
i.e. the target area is taken as corresponding area. Of 
course, Rmax ' the maximum similarity value, should 
exceed a certain threshold. Generally, their mid-pixels 
are taken as corresponding points. To arrive at sub-

pixel accuracy it is possible to view the distinct R's as 
discrete samples taken from a continuous correlation 
function. The neighbouring R's of Rmax are used to 
approximate the correlation function by a continuous 
function. At a local extremum (and this will be the 
maximum in case of an orderly function) the partial 
derivatives to x and y, df(r)/dx and df(r)/dy, will be 
zero. Wiesel (1981) approximates fer) separately in x 
and y direction by a second order polynomial: 

f( r) 

fCr) 

leading to the subpixel position of Rmax at: 

The precision of the above procedure with regard to 
the localization of control points in digi tal remote 
sensing images is analyzed by (Wiesel, 1981). Claus 
(1983) employs the method for the determination of a 
coarse DTM from a scanned aerial stereo photograph, 
using epipolar geometry to reduce search space. 
Hannah (1974) approximates f(r) by e-q, with 

i.e. log f(r) = q. 

A critical point is the choice of the threshold value of 
the similarity measure, i.e. its lower boundary. This 
choice seems to be rather subjective, depending on the 

L g.s)1 n 
i 1 

(3.10) 

( L (g.s)2 _ 
I 

( L g. s/ In) 
1 
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investigator and its background. Something to go by is 
to test the hltc0thesis whether the cross-correlation 
coefficient ROSS between two observation sets, each 
of sample size N, differs significantly from 0, using 
student's t test. In table .1, for a series of N, the lower 
bounds R are listed for the one-sided confidence 
levels 99.g%, 95% and 9U%. In case of a 5 x 5 target, 
i.e. N = 25, Rcross should exceed at least 0.5 to obtain, 
at the 99.5% confidence level, the certainty that there 
exists at least some similarity between the signals. In 
practice, Ro should be much higher. 

Ehlers (1983) has compared five correlation 
methods (also some not mentioned here) with respect 
to reliability, precision, stability, convergence and 
computation time and tested on scanned aerial photo­
graphs. 

Cross-correlation combined with the vertical line­
locus method is applied in digital stereo-photogram­
metry by Kern in resti tution instruments, equiped with 
digital cameras (Bethel, 1986). Its precision with 
respect to kind of texture, Z-spacing, window-size, and 
so on, is investigated by Alrnroth and Hendriks (1987) 
and Hendriks (1988). 



In digital remote sensing grey value correlation is 
employed to find topographic control points (Blllings­
ley, 1983) to automatically rectify satellite images. 
The target areas are masks taken from previous 
images and digitally stored. 

N t· 995 t' 95 t· 90 

4 0.99 0.90 0.80 
5 0.96 0.81 0.69 
6 0.92 0.73 0.61 
7 0.87 0.67 0.55 
8 0.84 0.62 0.51 
9 0.80 0.58 0.47 
10 0.77 0.55 0.44 
15 0.64 0.44 0.35 
20 0.56 0.38 0.30 
30 0.46 0.31 0.24 
40 0.40 0.26 0.21 

Table 1 

Ho (1985) and Wong and Ho (1986) use cross corre­
lation in combination with epipolar geometry to test 
the suitability of CCO-camera's and digital matching 
for close range application. A second order approxi­
mation of the correlation function is used to evaluate 
the quality of the match, the more narrow the corre­
lation function the better the match. A weighted 
scheme is used to become an approximate value for 
the parallax of the next point. 
The geometric differences between the two image 
patches are tackled by Nevatia (1976) and Tsai (1983) 
by a multiframe approach, using a number of 
progressive, closely spaced views. Disparities between 
extreme views are determined by chaining through the 
intermediate views. The reliability increases, at the 
cost of (although the search space can be kept small) 
augmented computational effort. 

3.2 Least Sguares Matching (LSM) 
We will develope here the model fora shift: 

Xs = xt + dx; y s = Yt + dye 

Let gt = gt(xt' Yt) be, the grey value function of the 
target area and gs = gs(~s' y s) the grey value function 
of the search area. It IS assumed that the noise is 
additive: 

denoting: 

gs(x t + dx, Yt+ dy) 

+ ns(x t + dx, Yt + dy) 

the above equation becomes: 

The equation is obviously non-linear. To solve the 
equation for (dx, dy), approximate values (dxo' dyo) 
are necessary 

dx = dx - I':, x; 
o 

leading to: 

dy = dy - I':, y; 
o 

with I':,g the difference between the grey values of the 
target and search area. 

Denoting the partitial derivatives 
dgs dg s 

dX' CIY) 
(i.e. gradients) in x- and y- direction by 
(gx' gy): I':, x and I':, y can be computed from a least 
squares adjustment: 

:: 1 

-1 

Besides shifts, other geometric differences 
between target and search area may be introduced, 
and also radiometric differences. Commonly an affine 
transformation is used: 

xt = ao + a 1xs + a 2ys 

Yt bo + b1xs + b 2ys 

The radiometric differences are often assumed to be 
linear: 

gt = ko + k l gs 

Once the transformation parameters are calculated, a 
representative point in the target area has to be selec­
ted and transferred into the search area. The centre 
coordinates of the mid-pixel of the target window may 
be appropriate. Pertl (1985) takes the centre of 
gravity, weighted by the squared gradients: 

2 
L 

2 
L xt , i gx, i Yt,i gy, i 
i i xt L 2 Yt L 2 

g x, i gy, i 

The precision of signal matching is determined by 
(Forstner, 1982; Forstner and Perti, 1986): 

0
0

2, image noise variance; 

- n, the number of involved pixels; 
2 2 2 h' d . - 0 ,0 ,0 , t e variances an co-varl-gx gy gx gy 

ances of the gradients in x- and y-direction. 

An estimate: 

can be calculated from the residuals n: 

2 
o 0 = L v2J r , with r the redundance. 
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T.he variances of ax anda y, the positional precision, is 
gl ven by (F orstner, 1982): 

1 
n 

0
2 
o 

-2-; 
o 

gx 

1 
n 

a 2 
o 

-2-
o gy 

In case the signal to noise ratio is known: 

SNR= 0 / a with a g 0' g 

the signal variance, the above may be substituted by: 

2 
1 

1 

n SN=\2 

a 2 

--..!L 
a 2 

gy 

In areas with a smooth grey v;rlue funct~n, i.e. low 
texture and Ii ttle edges, bc:!h a gx a2d a g w ill be 
small and consequently a and a lar?e, which 
corresponds to the intuitive n~tion. y 

Rosenholm (1986) presents a method, called multi­
poi~t. matching, to achieve matches in homogeneous 
reglOns. The method is combined with a bilinear trans­
formation to achieve parallaxes at a regular grid. This 
method is also appropriate to handle surface disconti­
nuities. 

Rosenholm (1987) investigates the effect of win­
dowsize on precision and reliability. Windowsizes of 
20 ,x 2.0, and 30,x 30 are optimal for precision. Optimal 
relIability requIres larger windows. LSM methods often 
use the epipolar geometry. LSM can reach precisions 
up to 1/20 pixelsize. The disadvantages of LSM are: 

1. ~t needs a time-consuming resamplingj 
2. It needs very accurate aPi.boximate values. 

So far known, Wrobel 1987' is the only one who 
:ea11y a~tempts to describe the surface reflectivity, 
IntroducIng an optical density function. The mathema­
tical formulation of the 'facet stereo vision' is rather 
complex, and to obtain a tractable method, simplifi­
cations are inevitable. 

Discussion 
All methods based on signal matching suffer from the 
following limitations: 

- the presents of detectable texture or edges is 
required; in areas with a smooth grey value func­
tion no optimal match will appear; 
repetitive micro structures will cause several 
equally likely matches; 
linear edges will cause many pronounced matches 
along the edges; 
surface discontinuities can't be handled; 
the target area may have no counterpart in the 
search space because of e.g. occlusion; 
they are computationally expensive; 
they are not rotational and scale invariant; 

Besides, LSM requires very accurate approximate va­
lues. Ambigui ties in the match result caused by low 
structure contents and linear edges may be avoided by 
examining the target area in advance. For instance, 
the presence of pronounced texture or corners indicate 
suitable targets. Hannah (1974) examines the autocor­
relation, which should be steep in all directions, of the 
target prior to correlation. The autocorrelation 
enables also the setting of a bound on the correlation 

measure. A bad correlation value will also indicate 
missing counterparts. H.epititive structures will cause 
a sequence of good correlation values. 

Moravec (1977) selec ts target areas by examIning 
the grey value variances in the four main directions. A 
target is suitable for correlation if the variances are 
high in all four directions. 8arnard and Thompson 
(1980) adopted this operator as interest operator for 
feature matching. Therefore we save its further elabo­
ration for the next section. 

Computation time may be reduced by: 
- Limitation of the search space by: 

1 

_ exertion of the epipolar geometry; the 2-D 
search space becomes 1-0, both images are 
rectified to the normal case, the rows 
become epipolar lines; 

- general knowledge about the object space 
(e.g. surfaces are smooth); 

- prediction of the next point from previous 
matches; 

Coarse-fine correlation by a multi resolution ap­
proach, matches at higher levels, guide match 
examination at lower levels; 
Utilisation of less costly similarity measures, like 
sum of the absolute values of differences. 

4 Feature Matching 

Contrary to some signal matching procedures, fea­
tures are detected in both images, leading to the pri­
mal sketch. Features can be points, lines and areas. 
Mai~ly pOi,:ts in combination with the epipolar geome­
~ry ~s applied. Several characteristic point detectors, 
I.e. lIlterest operators are developed. We will treat (1) 
t~:.e Marr-Hildreth, (2) Moravec, (3) Dreschler and (4) 
Forstner operator. For lines and shapes, the basic ope­
rators are edge detectors combined with line-following 
and vectorization methods. 
, Some criteria, important for the particular selec­

tIon of feature detectors are (Dreschler-Fischer 
1987): ' 

- Detection: defini tion of the features which are 
relevant for the actual correspondence analysis 
and the statement of their number; 

- L.ocalization: definition of the positional preci­
SIOn; 

- Attributes: definition of the attributes suitable 
for matching; 

- Robustness: the noise and geometric and radiome-
tric distortion tolerance. 

!o select corresponding features, first an upper bound 
l~ s~t ~n the parallaxes to reduce search space. Next, 
SImilar! ty measures are determined and considered as 
initi~l weights or costs, depending on further approach. 
For lIlstance, a 5x5 window around each point feature 
may be used to compute the cross-correlation with 
possible counterparts, and its value is used as likeli­
hood :neasure. Similarity check will generally not lead 
to unIque matches. Addi tional techniques are needed. 
the most succesfull techniques are based on relaxation 
m~nimal path computation using dynamic program~ 
r:,lng, robust statistics and simulated annealing. For 
lIne and shape matching other techniques are used. 

There are three properties of image pairs which 
can strongly influence matching (Barnard and Thomp­
son, 1980): 

- ~is.creteness is a property of individual points, 
glvmg a measure for the distinction of the point 
wi th its neighbourhood; 

- Similarity gives a measures of the resemblance of 
two points; 

- Con~istency a measure for the conformity of a 
partIcular match with surrounding matches, assu-



ming some general object model, e.g. the object 
surface varies only smooth attended by a limited 
number of surface discontinuities or the surface is 
a tilted plane. 

The above properties lead to the following three stages 
in feature matching: 

- selection of distinct features by an interest opera­
tor (distinction check); 

- selection of candidate features which may form 
possible matches, using one or more similarity 
measures (similarity check); 

- thinning of the list of candidate points, untill 
unique matches remain, consistent with an object 
model, i.e. determination of the correct matches 
(consistency check). 

We will first treat the interest operators and simi­
larity measures for point matching. Next the consis­
tency techniques are considered. The last part of this 
section describes line and shape matching but no spe­
cial attention will be set on edge detection and line 
following, neither on vectorization and shape descrip­
tion. 

4.1 Point matching 

4.1.1 Distinction and similarity check 
The environment of an interesting point is characteri­
zed by a steep autocorrelation function in all direc­
tions, high variances in all directions and steep gra­
dients in all directions. These properties leads to as 
many as approaches. Autocorrelation considerations 
are used by Hannah (1974) for signal matching purpo­
ses. For feature matching it doesn't seem to be suited 
(Dreschler, 1981). The statistical variance view leads 
to the approaches of Moravec (1977) and Forstner 
(1986). The gradient view has led to the surface curva­
ture examination of Dreschler (1981) and Dreschler 
and Nagel (1982). Requirements characteristic points 
should fulfil are (Forstner, 1986): 

Discreteness: the points must be different from 
neighbouring points; 

- Invariance: both the selection and the localization 
of the points should be unaffected by geometric 
and radiometric distortions; 

- Stability: the point must have a high probability to 
appear in both images; 

- Seldom ness: in order to achieve reliable results 
features derived from repetitive structures should 
be avoided. 

4.1.1.1 Marr-Hildreth operator 
Based on the human visual system Marr and Hildreth 
(1980) have developed an operator to detect grey value 
changes. It is the second derivative of a Gaussian, in 
particular the Laplacian of a Gaussian: 

'V 2 S(x,y) * G(x,y) 

with S(x,y) the 2-D normal distribution in 1-0 form 
given by: 

Sex) = 1 
1 

0(2 'IT) 2: 
e 

and 'V 2. the Laplace operator, executed on the image 
G it gives: 

1 

A Gaussian can be approximated by a repeated 
convolution of a 2x2 unweighted smoothing filter, e.g.: 

1 3 3 1 
1 3 993 

64 3993 
1 3 3 1 

1 
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Defining gx and g as the normal gradient images 
(see for masks table 1.), than the Laplace operator, 
gxx + gxx is given by: 

Conv~lution of the Gaussian with the Laplacian 
yields 'V S. The general shape of this operator is illus­
trated in fig. 6. At the point of inflexion of a curve the 
Laplace operator will give the response O. In general 
on a raster the point of inflexion isn't found directly. It 
is surrounded by a positive and a negative operator 
response. The zero-crossing can be found by a linear 
interpolation. The attributes for similarity test are 
sign and orientation of the line, the zero-crossing is 
part of. The sign is determined by the sign of the first 
operator response (positive or negative) when moving 
along an epipolar line. 

4.1.1.2. Moravec operator 
In order to check whether variances are high in all 
directions, samples in some directions are chosen. In 
particular the four main directions, defined by rows 
and columns and the two diagonals are evaluated. The 
variance in each direction is computed as the sum of 
squared grey value differences between neighbouring 
pixels. The original Moravec is defined for a 5x5 win­
dow: 

1 2 1 
/ M1 (j ,j) ZOE E ( g(i+k,j+J) - g(i+k, j +1 +1) 

k=-2 1=-2 

1 2 
)2 ~(itj) _1_ E E ( g( i +k, j + I) - 9 Ci +k + 1, j + 1 ) 

20 k=-2 1=-2 

1 
1 1 

)2 M:>(i,j) 16 E E ( (g(i+k,j+l) - g(i+k+1,j+l+l) 
k=-Z 1=-2 

1 
1 1 

)2 M
4

(i ,j) 16 E E ( 9 (j +k , j + I + 1 ) - 9 ( i +k + 1, j + 1 ) 
k=-2 1 =-2 

The operator response M for single grey value 
images i defined by: 

M = min (Mi), i = 1, •• ,4. 

If tv! exceeds a certain threshold Mt then the point, (i,P 
is excepted as characteristic POint. Charactenstic 
points will cause a series ~f ~perato.r responses ~bove 
the threshold. To achieve distinct POints non-maXImum 
suppression has to be implemented. 



F or colour images (multispectral data) the operator 
can be modified in two manners (Dreschler-Fischer 
1987): 

- The single grey value Moravec operator is applied 
to the distinct bands, Mk, k=l, •• n. The colour res­
ponse is the maximum of the responses in the 
distinct bands, i.e.: Mc = max (Mk); 
The directional variances may also be computed 
for the spectral band vectors. The squared diffe­
rences of the vectors are calculated. Like in the 
single value approach, the response should exceed 
a threshold. In case of visible bands (blue, green 
and red) this colour-vector operator has proven to 
be significantly better than the other Moravec 
operators (Dreschler Fischer, 1987). 

The Moravec operator is easy to implement, but its ad 
hoc character has several drawbacks (Dreschler, 1981): 

- not the real corner is found, but a shi ft is introdu­
ced, the larger the size of the operator, the larger 
the shift; 

- it is sensitive to low resolution features, i.e. small 
points cause an extended operator signal; 

- the operator is non-rotational invariant. 

Fig. 6 

Barnard and Thompson (1980) use as similarity 
measure between characteristic points of conjugate 
images the sum of the squares of the differences of 
the surroundig windows. 

4.1.1.3 Dreschler operater 
The grey value function may be looked at as a curved 
plane, much in the same way as a digital elevation 
model. From differential geometry it is known that the 
Gaussian curvature: K = k1 x k2 is invariant against 
geometric transformation and such a measure is very 
appropriate for stereo matching. The general equation 
of a smooth, i.e. second differentiable, surface is re­
presented by: 

r(u,v) = (x(u,v), y(u,v), z(u,v) ) 

with (x,y,z) Carthesian coordinates and (u,v) surface 
coordinates. The explicite expression of a smooth sur­
face g = f(x,y) becomes in parameter description, with 
(x,y)~-",,>(u,v): 

r(u,v) = eu, v, g(u,v» 

The second partial derivatives of r(u,v) are given by: 

ruu (0, 0, guu) 

ruv (0, 0, guv) 

rvv (0, 0, gvv) 

The curvature information is now enclosed in the 

sYmr~Ui: tror

: 

with: 

L = g Ie uu 

M = g Ie uv 

Since, only the third coordinate of r uu' r uv and r vv 
differs from 0 and just the kind of curvature and not 
its absolute value is of interest, the principal curva­
tures are found from an eigenvalue analysis of the 
symmetric matrix: 

The principle curvatures k1 and k2 (k1 >k2) become: 

The principal direction 0 is given by: 

o = ! atan (2g I (g - g » xx xx yy 

The attributes for similarity check are the signs of 
k1 and k2' e.g. k1 is positive and k2 is negative indi­
cates a saddle point. 

4.1.1.4 Forstner operator 
Forstner (1986) describes an operator, which evaluates 
the covariance matrix C of the gradient images gx and 
gy of a neighbourhood, e.g. a 5x5 window: 

C 

gx and g may be computed from the normal gradient, 
the Rob~rts gradient or one of the other operators in 
table 2. The distinct advantage of this approach is that 
the covariance matrix of the gradients determines the 
precision of the match, i.e. features can be a priori 
selected on their suitability to give precise matches. 
To avoid edges, where the match isn't defined in the 
direction along the edge, the error ellipse must be 
nearly a circle. Further the error ellipse should be 
small. 

The eigenvalues Al and A 2 ' AI> ~, determine the 
shape of the pllipse, e.g. the elongatedness is given by 
E = (A JI A2) 2". The eigenvalue computation can be 
avoide by taking a direct measure: 

1 - [ 
Al _ A 2 r q 

Al +A2 

Since: 
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C C 
xx yy 

and: 

C + C xx yy 

2 
q = 4 det C / tr C 

C 2 
xy 

The size of the ellipse is computed from: 

w = det C/ tr C 

The feature can be computed up to subpixel level by 
using the centre of gravity. Extracted points in an 
artificial stereo pair found by this operator are shown 
in fig. 7. Contrary to the Moravec operator, the 
Forstner operator is rotational invariant. It has also 
shown very nice properties for selecting other fea­
tures, like edges and circles (Forstner and Gulch, 
1987). As similarity measure the cross-correlation 
between small windows around the points are used. 

4.1.2 Consistency Check 
The interest operator together with the similarity 
check will lead to an initial set of possible matches. 
The list will contain many ambiguities, because of 
imperfections in operators and similarity measures and 
because e.g. occlusion and shadows will bring about 
that points are just detected in one image. A consis­
tency check has to be undertaken using an object mo­
del. Commonly, the epipolar constraint is employed to 
reduce search space. Ullman (1979) reformulates his 
surface model of minimal mapping as a linear pro­
gramming problem, i.e. a path of minimal costs is 
searched. Commonly, the costs are defined reciprocal 
to the similarity measures. Many authors have adopted 
the idea of minimal cost path search, mostly combined 
with concepts of dynamic programming (DP), deve­
loped by Bellman (1957) and extensively expounded in 
(Kaufmann, 1967). In photogrammetric stereo mat­
ching the DP approach is explored by (Benard et. al., 
1986) and (Kolbl et. al., 1987). A further refinement is 
to constraint the solution by edge connecti vi ty across 
the epipolar lines, e.g. Lloyd et. a!. (1987) and Ohta 
and Kanade (1985) use DP combined with consistency 
constraints defined by vertically connected edges. 
Ohta and Kanade (1985) use both DP for the search 
along epipolar lines Ontra-scanline search) and across 
the epipolar lines (inter-scanline search). Lloyd et. al. 
(1987) employ DP to produce candidate matches along 
epipolar lines. The solution is constrained by relaxation 
labelling using the connectivity of edges. 

Relaxation labelling iteratively updates an initial 
probability by an amount proportial to the estimate of 
its consistency with the labelling over its neighbour­
hood. A labelling consistent with neighbouring allot­
ments is remunerated with an increased probability. 
The process is repeated until a steady state is achie­
ved. The relaxation approach is investigated by 
Barnard and Thompson (1980), using a smooth object 
model, i.e. the dispartities in a neighbourhood don't 
vary abruptly. The problem with this approach is that 
some labels may be left unmatched whereas others 
may be double or even more matched. This is caused 
by the fact that the assignment of image 1 to image 2 
will not give the same results as when the assignement 
is performed in reverse direction. Dreschler (1981) 
signalizes this problem and modifies the Barnard and 
Thompson approach by introducing a symmetric as­
signment. Relaxation labelling is also used when the 
features are shapes. A brief view is given in the next 
section. 

Forstner (1986) introduces the concepts of robust 
statistics, like they can be found in (Hampel et. al., 
1986) to tackle the consistency constraint. The object 
model is a plane. As ini tial weights of the consistency 
of the match between two points cross-correlation is 
employed. Using an influence function, weights are 
decreased when matches show large residuals in the 
least squares approach. In an interative procedure a 
steady state is achieved. In fig. 7 the correspondening 
points found by this procedure are indicated. 

7 Artificial stereo The isolated points are 
extracted with the Forstner operator. Correspondence 
analysis is performed with robust estimation, assuming 
a tilted plane as object model (adopted from Forstner, 
1986) 

Another approach, which has a physical back­
ground, is the one of Barnard (1986, 1987). It is an 
interative method too, based on annealing and there­
fore called simulated annealing. It is employed to 
overcome the disadvantages of relaxation, which are 
(Anily and Federgruen, 1987): 

- the final solution is heavely dependent on the 
starting point; 

- the solutions tend to relax in local optima. 
Simulated annealing methods attempt to avoid these 
problems by randomizing the procedure, at the cost, 
however, of much more computation time. 

4.2 Line and Shape Matching 
The segmentation techniques, like edge detection, line 
following and region growing, to detect shapes, are 
leaved out of consideration. The masks of some com­
mon edge detectors are just listed in table 2. The 
Forstner operator is also sui ted for edge detection; an 
edge is indicated by a small roundness measure q. 
Since line segements are the elementary parts of 
shapes, we will view line matching as part of shape 
matching. 

Shape matching is tackled by many approaches. 
One of the earliest procedures is to decompose shapes 
in a chaincode. If a 1, .• ,an is the chain code of the one 
curve and b1, .. ,bm that of the other, with n >m, than 
the chain correlation function C(j), is given by: 

m 
C(j) L cos ( ( b . - a. .) rmd 8 IT /4) ) 

i =1 1 1+ J m 

= 1 if both curves match 
very efficient ( 



code correlation is of limited value, since: 
- it is not rotation and scale invariant; 
- it is sensitive to noise. 

Many shape matching techniques are based on the 
view that shapes can be represented by a set of mea­
sures, defined by the particular occurance of the 
shape, and matched against each other using statistical 
methods. To the variety of features, which may des­
cribe a shape, belong: eiongatedness, compactness, 
perimeter, area, moments and Fourier descriptors. 

Another approach is that shape boundaries are 
represented by a polygonal approximation. The length 
of the segements depend on the curvature. Davis 
(1979) uses the angles between adjacent segrnents as 
basic descriptors, i.e. a shape is viewed as a sequence 
of angles. The similarity between pairs of angles on 
the two shapes are evaluated and indicated by figures 
of merit. Although the problem is formulated as an 
optimal path search, i.e. the most suitable approach 
would be dynamic programming, a relaxation method is 
applied to select the best matches, because of the 
computational costs associated with dynamic pro­
gramming. 

normal 
gradient 

Roberts 
operator 

Prewitt 

rnrn 
LTI 8J 

-1 

operator -1 

Sobel 
operator 

-1 

-1 

-2 

-1 

0 

0 

0 

-1 -1 -1 

1 

2 

1 -1 -2 -1 

Table 2 

Medioni and Nevatia (1984) develop a shape mat­
ching method based on a graph representation using 
geometrical descriptors. These descriptors are: 

- coordinates of the end points; 
- orientation; 
- width, 

and refer to segments, i.e. groups of connected line 
features. Additionally, constrast is used. The segmen­
tation is carried out by first detecting local edges, 
using step edge masks in various orientations, and next 
thinning and linking the edges and fi tting the curves by 
piece-wise linear segrnents. Matching is performed by 
discrete relaxation, i.e. the geometrical descriptions 
which give the best resemblance are searched in an 
iterative process. 

For time varying images, Costabile et. a1 (1985) 
develop a method of shape matching using a graph 
description combined with a tree search. Once the 
boundary of an area is approximated by linear fea­
tures, the polygon is decomposed into convex parts. To 
each convex part, two attributes are assigned: 

1 the arc-to-chord ratio; 
2 the area between arc and chord. 

The arc is defined by the sequence of lines between 
the start and end point of a convex part and the cord 
by the line between start and end point. The corres­
pondence search is carried out by a tree search. 

5 Relational 

Relational matching takes, besides the descriptive 
attributes of phenomena, also relations between the 
phenomena into account. So, a set of elementary to­
kens, like points, blobs, line fragments and regions, are 
detected, characterized by attributes, like length, 
area, shape and average grey value, and assigned to 
each other. To these relationships, which describe only 
the spatial connextion, also attributes can be assigned 
describing their properties (Shapiro and Haralick, 
1987). The primitives form an entity. It is the task to 
find a mapping of the primitives of the one entity to 
those of the second entity, that best perceives the 
characteristics and relationships. The basis of entity 
description is found in graph theory. The description 
yields long lists. With the aid of searching algorithms, 
like backtracking tree search or one of its variants, 
the best mapping of the one entity onto the other is 
determined. Because of the different view points of 
stereo images, the same object structure has different 
graphs in both images. So, the matching procedures 
must tolerate these differences, leading to inexact 
matching techniques. Shapiro and HaraUck (1981) for­
mulate the concepts of exact and inexact matching of 
graph representation of structures. Because relational 
matching of complex scenes is still in its infancy and 
subject of current research, we will not elaborate it 
here. A basic introduction to relational matching can 
be found in Ballard and Brown (1982). More advanced 
are the exposi tions of Shapiro and HaraUck (1987) and 
Boyer and Kak (1988). 

6 Conclusions 

A survey on stereo irnage matching techniques is 
presented. Ideally we would like to match each pixel in 
the one image with a pixel in the other image to arrive 
at a dense surface description. But the individual grey 
values or vector of grey values don't contain enough 
information to arrive at reliable matches, because 
noise, illumination differences and so on, will cause 
ambiguities. Using a neighbourhood of the pixels can 
limit the ambiguity, leading to signal matching, but 
ambiguities can't be avoided entirely, because of geo­
metric differences and occlusions. 

Methods, highly proof against image differences, 
operate on a high level, i.e. pattern recognition is 
performed prior to matching. The thematic phenomen­
a, like houses and roads, and their interrelationships 
are matched. But such a relational performance re­
quires extraction of many objects in complex scenes, 
which is beyond the present state of computer vision. 
Besides, without further refinement techniques no high 
geometric precision will be achieved. A technique in 
between signal and relational matching is the extrac­
tion of radiornetric independent phenornena, like points 
and linear features, solving the correspondence pro­
blem by these A dense surface 
description is 

1 



To reduce search space and to find matches more 
reliable, frequently a coarse to fine matching strategy 
is applied. But the three matching methods may be 
viewed in an hierarchical way, too. Relational mat­
ching, to find rough (i.e. global) matches, next feature 
matching will give precise (i.e. local) matches. For 
high precision measurements these feature matches 
may be considered as approximate values for signal 
matching. Signal matching and feature matching have 
already found their way to photogrammetry. Relatio­
nal matching is on its way to get there. 
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