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ABSTRACT

Both systematic and gross errors have been acclaimed as part of the problems facing
phototriangulation today. Two independent algorithms for treating the two types of errors have
been combined and developed to process the data in a single run. This paper investigates the
effectiveness of robust algorithms in treating blunder-infested photogrammetric data set that
requires photo-variant bundle adjustment solution.

1. INTRODUCTION

The totality of errors occurring in photogrammetric measurements and in any measurable
observation for that matter, can be effectively grouped into three types: random, systematic
and gross errors. Traditionally, gross errors have been detected and eliminated through
efficient observational techniques and pre- and post-processing data screening. Systematic
errors have been mathematically modelled and computationally accounted for; and more
recently, additional parameters have been included in the observation equations to account for
systematic errors.

The use of traditional least squares adjustment to process the data is an offshoot of the
treatment of the random errors. It should be observed that a set of raw measurements
undergoes these three processes sequentially before the desired parameters are obtained.
Recently, advantages in computational savings have been reaped and improvement in accuracy
has been achieved by combining the simultaneous treatment of systematic and random errors
into one process through the use of additional parameters. Still, gross error treatment remains
a pre- and a post-adjustment process.

Robust estimation methods are capable of simultaneous parameter estimation and outlier
elimination during the estimation process. If our observation equations contain additional
parameters to model the effect of systematic errors, then the use of iteratively reweighted least
squares with an appropriately chosen M-estimation p—function gives us a tool for simultaneous
treatment of all errors.

At present, research is continuing at the University of New Brunswick in the development of
robust algorithm and software for the simultaneous treatment of all errors in a bundle
adjustment. Preliminary results are encouraging and are presented in this paper.

2. ROBUST ESTIMATION METHODS

The poor performance of least squares estimators in the presence of outliers or of minor
deviations from the assumptions of the error distribution, led statisticians to search for an
alternative method to least squares. This led to the development of robust estimation methods
(see [Tukey, 1960; Huber, 1972]). Studies were initially concentrated on the location case,
culminating in the famous Princeton Robustness Study [Andrews et al., 1972]. The
satisfactory result obtained for robust esitmation of location parameters encouraged the natural
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generalization of the technique to the more complicated regression case and to other more
structured data such as surveying data.

To get an idea of how robust estimation can simultaneously eliminate and decline outliers in the
parameter estimation process, a simple example is illustrated for the location parameter case in
Kubik and Merchant [1986]. There, the measurement sample 10, 11, 11, 12, 100 has one
obvious spurious value, 100. The least squares estimate of the population mean from which
this sample is assumed to be drawn is 28.18, whereas a robust estimation method produced the
actual mean of 11.0 which would have been obtained with the least squares method in two
steps after eliminating the value 100. A similar example is given for the robust regression case
in Andrews [1974] using the famous stack loss data. Four outliers were detected in four steps
with standard statistical tests, whereas Andrews' sine wave robust estimator detected all four
blunders in one step.

Thus, robust estimation procedures can conceptually be grouped into two major parts: (i)
robust estimation of location parameters and (ii) robust regression. The first part has direct
applications for repeated single variable measurements and can be utilized in specialised
applications at the input stage of a bundle adjustment software in order to eliminate simple
blunders such as those due to misidentification of points. On the other hand, robust regression
has direct application at the adjustment stage and is the method considered in this paper. Huber
[1964] classifies robust estimation methods into three categories: (i) M-estimation methods,
which are related to the maximum likelihood estimation method, (ii) L-estimation methods,
which are linear combinations of the ordered statistics and (iii) R-estimation methods which are
based on ranks or scores of the observed data. Extensive studies of these methods in the
location problem have shown that the M-estimation is easier, more flexible and has better
statistical properties than L- and R-estimation methods. Moreover, only the M-estimation
method has a clear and flexible generalization to the regression case. Hence, it is the only
method considered in this study.

2.1 Robust M-Estimation Methods

The classical least squarés method minimizes the Weighted sum of squares of the
residuals given by:

p(v)=v Pv =min (D
where P is the weight matrix of the observations.

The p function in equation (1) can be made more general by replacing the weighted sum
of squares of the residuals by a less rapidly increasing function [Huber, 1977]. The objective
then boils down to minimizing

Z p(vi/ci)
or equivalently solving the system of equations

Zw(vi/ci)—§£=0,j=l,2,...,u 2)
8Xj

in which the previous objection function

/\T Pa
p(v)=v Pv
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for the least squares method is a subclass To make the estimator scale invariant (see Huber
1973; Hogg, 1979), v is set equal to p' in equation (2) and the expression is divided by oy,
the standard deviation of v. The v functions and their associated tuning constants further
divide the M-estimators into subclasses. Thus, there are Huber's M-estimator, Hampel's
M-estimator, Andrews' M-estimator, etc. Also Huber's M-estimator with a tuning constant
equal to 1nf1n1ty gives the usual least squares estimator. A collection of presently available y
functions is given in Faig and Owolabi [1988a].

Quite apart from the possibility of nonlinearity of the functional model f, most y functions are
available in nonlinear form, requiring that the solution of equation (2) be iterative in nature. Of
the three approaches avallable to solve equation (2) [Holland and Welsch, 1977], the iteratively
reweighted least squares method is the most favoured and widely used, because of its
flexibility. Furthermore, it only requires computing a weight function as a function of the
scaled residuals, that is, w(v/0Oy) = ¥ (v/0y)/(v/Oy); and then using an existing weighted least
- squares algorithm.

3. PHOTO-VARIANT SOLUTION FOR CLOSE-RANGE DATA

The systematic errors affecting photogrammetric measurements include film deformation, lens
distortion, refraction and other anomalous distortions. Usually, these distortions are modelled
and their values obtained from calibration reports. Recent advances in data processing
techniques favour the idea of including the distortions as additional parameters in the solution,
which are recovered simultaneously with the exterior orientation elements and the object space
coordinates. : :

Since metric cameras have stable interior geometry over a period of time, the additional
parameters are usually carried as invariant from photo to photo. A more sophisticated data
processing algorithm allows for the distortions to vary from photo to photo. This is known as
photo-variant solution [Moniwa, 1981]. Thus, the suitability of non-metric camera for
close-range data acquisition is enhanced [Karara and Faig, 1980]. Significant contributions in
the modelling of the systematic errors, the classification and performance of various additional
parameter models in photo-variant and photo-invariant bundle adjustment are reviewed in Faig
and Owolabi [1988b].

4. SIMULTANEOUS SOLUTION FOR ALL ERRORS

Although we do not expect to have data sets as large in close-range applications as in aerial
triangulation, the frustration of having to sequentially process data infested with blunders,
suggests an alternative "automated" procedure. Already, close-range data acquired with a
non-metric camera requires the use of a photo-variant bundle solution. Invariably, the
measurements are usually infested with blunders. It then sounds reasonable to take advantage
of robust estimation methods in the estimation of the desired parameters. A robustified bundle
adjustment procedure has been developed along this direction. It has already been utilised in
comparing the effectiveness of using ordinary least squares plus data snooping and Andrews'
sine wave robust M-estimator (see Faig and Owolabi, [1988a]). In that study, the robust
method revealed the exact amount of the imbedded blunder in the residuals, while the least
squares method distributed the blunder to other unperturbed points. In this paper, the study is
generalised to include photo-variant self-calibration and comparison of several robust
M-estimators for processing close-range data.

5. EMPIRICAL STUDY

Using the procedure and software described in Woolnough [1973], data for four photographs
were generated with close-range characteristics.
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In the test performed by Faig and Owolabi [1988b] to compare several additional parameters, it
was shown that parameter sets that model physical causes or model effects by the use of
trigonometric terms performed better than parameter sets that model effects with ordinary
polynomials. For this reason, the parameter set by Kilpela [1980] was used for this study.

Two control point patterns (high and low) were used for comparison purposes. Three sizes of
blunders: 3 um (small size), 10 um (medium size) and 10 mm (large size) gross errors were
added to one coordinate of an image point, and each robust M-estimator tabulated in Faig and
Owolabi [1988a] was used to process the data in turn while the photo-variant self-calibration
mode was activated in the adjustment.

6. DISCUSSION AND CONCLUSION

Tables 1 and 4, 2 and 5, and 3 and 6 show the root mean square errors at check points when 3
um, 10 um and 10 mm blunders were introduced using several M-estimators and two different
control point patterns, respectively. First, a reference adjustment was carried out using least
squares with additional parameters and blunder-free data. The result is tagged LSSA in the
tables. Next, the blunder was introduced and the data was adjusted without additional
parameters and then with additional parameters. The results are tagged LSAB and LSAC
respectively. Thereafter, ten robust estimation methods were used to process the data.

It can be seen that the effect of small-sized blunders on the adjusted coordinates is deceptive.
The results appear to be good (see LSAB in Tables 1, 2, 4 and 5); however there was
improvement in accuracy when robust estimators were used. Moreover, the imbedded
blunders were revealed in the residuals (see Tables 7 and 8). On the other hand, large-sized
blunders tend to deterioriate the adjusted coordinates completely (see LSAB in Tables 3 and 6).
Usually one would have to do some statistical tests to detect the errors, eliminate them and then
perform the adjustment again. However, it can be seen from Tables 3 and 6 that the blunder
was deprived from participating in the solution, thereby improving the accuracy of the solution
obtained earlier for LSAB and LSAC, provided good geometry is still maintained. The blunder
was also revealed in the residual (see Table 9). The trade-off for this improvement is the
exhorbitant rise in computational time.

There was no robust method that displayed any consistency from one error size to another and
from one control point pattern to another. The Hinich's robust method performed best in plan
and height with few iterations when a small-sized blunder was introduced with the high density
control point pattern. Huber's method has the worst result in planimetric and height accuracy,
although it has fewer iterations. With large-sized blunders, Cauchy's robust method
performed best with the low density control point pattern, while Fair's method produced the
worst result. Nevertheless, the common characteristic for all the robust methods is their ability
to discriminate against blunders by giving them low or zero weight in the solution.

It is remarkable that Andrews', Hinich's, Danish, Huber and Least sum estimators

consistently worked with fewer iterations. On economic considerations therefore, they may be
favoured for processing large photogrammetric data sets.
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M-estimators
TIME(SEC)

10.289
5.805
10.338
35.888
140,657
L1258
LO77
942
.379
,124
7.421
2.613
.473

control
M-~e3Timatlors

TIME(SEC)

M-estimators
TIME(SEC)

10.289
35.412
100.658
75.304
142.713
47.945
78.7585
157 .537
35.827
54,125
69 .424
46.219
41.939

TABLE 1 ! RMSE values for High Densily control TABLE 4 :@ RMSE Vsiues for Low Density control
Wwith 3um Biunder Using Severa! M-estimators Wwith - 3um Biunder Using Severatl
NAME XY CMMY z¢mmy ITR TIME(SEC) . NAME XY (MM) Z¢mmy IR
LSAA 0.040 0.210 3 10.430 LSAA 0.041 0.217 3
LSAB 0.054 0.398 3 5.932 LSAB 0.059 0.391 3
LSAC 0.048 0.293 3 10,546 LSAC 0.047 0.317 3
ANDREWS 0.048 0.327 8  26.0819 ANDREWS 0.053 0.352 11
TUKEY 0.043 0.283 31 93.388 TUKEY 0.041 0.282 46
HINICH 0.039 0.250 6 20.538 HINICH 0.048 0.311 6
CAUCHY 0.039 0.261 24  75.752 CAUCHY 0.044 0.312 19
WELSCH 0.043 o0.288 21 67.344 WELSCH 0.041 0.313 53
HUBER 0.049 0,340 6 20.521 HUBER 0.053 0.362 8
LOGISTIC 0.042 0.252 13  42.549 LOGISTIC 0.051 0.335 15
FAIR 0.046 0.294 29 92.588 FAIR 0.045 0.307 31
DANISH 0.042 0.256 10  33.105 DANISH 0.050 0.320 10
L~-SUM 0.045 0.281 8 2s.807 L-SUM 0.050 0.315 8
TABLE 2 : RMSE Values for Hish Density control TABLE 5 : RMSE Values for Low Densiiy
With 10um Blunder Using Several M-astimators Wwith 10um Blunder Using Severa!
NAME XY (MM) Z {MM) IIE*_IETEE§ESE NAME XY (MM) Z¢mMy  ITR
LSAA 0.040 0.210 3 10.430 LSAA 0.041 0.217 3
LSAB 0.050 0.295 3 5.951 LSAB 0.047 0.302 3
LSAC 0.048 0.286 3 10,465 LSAC ©.043 0.296 3
ANDREUS 0.048 0.327 e 25.819 ANDREWS 0.053 0.352 10
TUKEY 0.040 0.254 37 116.177 TUKEY 0.040 0.260 a6
HINICH 0.039 ©.231 8. 26.733 HINICH 0.043 0.271 6
CAUCHY 0.045 0.285 32 101.316 CAUCHY 0.044 0.295 20
WELSCH 0.044 0,305 29 92 .005 WELSCH 0.040 0.279 20
HUBER 0,049 0,340 [ 20.308 HUBER 0.053 0.362 8
LOGISTIC 0.041 0.249 2] 30.057 LOGISTIC 0.043 0.270 11
FAIR 0.043 0.264 14 45.445 FAIR 0.044 0.285 27
DANISH 0.042 0.236 12 2%.346 DANISH 0.043 0.282 16
L-SuMm 0.044 0.279 9 29.818 L-SUM 0.048 0.306 12
. . TABLE 6 : ]
I SRR IR STEn " 1amm 8runaer Using Severs! morstinator
NAME XY(MMY  ZQMM)  ITR  TINE(SEC) oo NAME_ XYM E(mmy TTR
LSAA 0.040 ©.210 3 10.430 LSAA 0.041 ©0.217 3
LSAB 16,336 145.586 22  35.878 LsaB 18.215  99.439 22
LsAc 18.939 145.048 23  67.168 LSAC 16.086  96.024 35
ANDREUS ©.048  0.335 18  57.915 ANDREWS ©.054  0.357 24
TUKEY 0.048 0.555 46 142.818 TUKEY 0.073 0.573 48
HINICH 0.058  0.424 10 32.784 HINICH 0.056  0.382 15
CAUCHY 0.050 0.327 22  69.861 CAUCHY ©.041 c.217 25
WELSCH 0.080 0.339 27 85.450 WELSCH 0.051 0.410  s1
HUBER 0.050 0.359 11  35.980 HUBER ©.054 0.381 11
LOGISTIC 0.048 0.329 14  45.095 LogrsTIc 0.049 0.217 17
FAIR 0.051 0.319 20 63.570 FAIR 0.089 0.581 22
DANISH 0.051 0.327 14 45.063 DANISH 0.056 0.400 15
L-SUM 0.046 0.300 12 39.184 ____k-sum  o.051 0.321 13
Note: LSAA = Lesst squares solutlion with additionsl|
parameters, no blunder introduced
LSAB = Least squares solution without additionsa!
parameters but blundep Introduced
LSAC = Lesst squeres solution with sdditionsal

parameters end blunder

introduced
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SAMPLE OUTPUT

Table 7: Robust Estimator for Qutlier Detection

Using 3 pm Blunder

| PHOTO | POINT | VX | WEIGHT | OUT- 1 VY | WEIGHT | OUT- |
| ID# | ID & | (MM I | LIER | (MM) [ | LIER |
] 11 | 2 { -0.0005 | 0.000 | I 0.0008 | 0.0001 i
[ 11 1 31 0.0000 | 1.000 1| | -0.0001 | 1.0001 |
| 11 ) 4 | 0.0001 ! 1.000 | i -0.0004 | 0.0001 {
] 11 4 5 1 0.0000 | 1.000 1| [ 0.0001 | 1.0001 i
| 11 1 6§ | -0.0001 | 1.000 | | 0.0003 | 1.0001 |
! 111 7 1 0.0000 | 1.000 1 i 0.0007 | 0.0001 {
| 11 1 8 | 0.0004 | 0.000 | I 0.0002 | 1.0001 |
{ 111 9 | 0.0002 | 1.000 1} ! 0.0007 | 0.0001 |
| 11 1 12 1 0.0000 | 1.000 | I 0.0004 | 0.0001 ]
I 11 4 13 1§ 0.0000 | 1.000 | { 0.0006 1| 0.0001 i
| 11 1 14 | 0.0000 | 1.000 | § 0.0007 | 0.0001 i
I 11 | 151  0.0000 | 1.000 | I -0.0001 | 1.0001 I
1 11 | 16 | 0.0000 | 1.000 | | 0.0002 | 1.0001 |
1 11 17 1 0.0000 | 1.000 | [} 0.0000 | 1.0001 {
[ 11 | 18 | 0.0000 | 1.000 | i 0.0001 1| 1.0001 |
| 11 14 19 | -0.0001 1| 1.000 | { 0.0001 | 1.0001 |
| 11 22 -0.0002 ! 1.000 | i -0.0001 1 1.0001 {
| 11 1 23 1 0.0000 | 1.000 i 0.0002 | 1.000!1 |
{ 11 ! 24 | 0.0000 1} 1.000 | f 0.0003 | 1.0001 |
i 11 1 25 | -0.0001 | 1.000 1| { 0.0000 | 1.0001 |
| 11 1 26 | 0.0000 | 1.000 1 i 0.0000 | 1.0001 i
i 11 | 27 1 0.0000 | 1.000 | i -0.0002 1 1.0001 |
| 11 | 28 | 0.0000 | 1.000 | ] 0.0001 | 1.0001 |
! 11 1} 29 | 0.0002 | 1.000 | | 0.0004 1| 0.000! |
{ 11 | 32 | 0.0000 | 1.000 1§ { -0.0002 1| 1.0001 |
i 11 1§ 33 1 0.0000 | 1.000 1 { 0.0000 | 1.0001 |
| 11 ! 34 | 0.0000 | 1.000 | i 0.0000 | 1.0001 |
| 11 ! 35 | 0.0000 | 1.000 | | 0.0000 | 1.0001 |
| 11 4 36 | 0.0000 | 1.000 | i 0.0000 | 1.0001 |
i 11 1 37 1 0.0000 | 1.000 | I -0.0007 | 0.0001 i
| 11 1 38 | 0.0000 | 1.000 | i 0.0000 | 1.0001 i
| 11 1 39 | 0.0001 | 1.000 | | ~-0.0001 i 1.000! !
! 11 1 41 | -0.0001 | 1.000 | I 0.0000 | 1.0001 i
i 11 | 42 | 0.0001 | 1.000 | I 0.0005 | 0.0001 I
| 11 1 43 | 0.0001 | 1.000 | i 0.0005 | 0.0001

| 11 1 44 | -0.0002 | 1.000 | i 0.0000 I 1.0001 ]
| 11 1 45 | ~-0.0003 | 0.000 | i -0.0001 | 1.0001 i
| 11 14 46 | -0.0001 | 1.000 1| i -0.0002 1 1.0001 i
I 11 | 47 | 0.0029 | 0.000 | # i 0.0001 | 1.0001 I
[ 11 1 48 | 0.0002 | 1.000 1| | 0.0000 | 1.0001 |
i 11 | 49 | 0.0000 | 1.000 | I 0.0002 | 1.0001 I
I 11 1 51 1 0.0001 | 1.000 | i 0.0000 | 1.0001

i 11 52 | 0.0000 | 1.000 | | 0.0002 | 1.0001 |
| 11 1 53 | -0.0002 | 1.000 | | 0.0001 | 1.0001 |
I 11 | 54 | 0.0003 1 1.000 | i ~0.0002 i 1.0001 |

o > o o D e o S o > S G 0 S D S B e T > A . T e O e G T T D T AR Do G WS N G WD AR S T D e W NG M s e e T G e G me G S e S R S e A o
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SAMPLE OUTPUT

Table 8: Robust Estimator for Qutliner Detection

Using 10 pm Blunder

| PHOTO | POINT | V¥X | WEIGHT | OUT- 1| VY | WEIGHT | OUT- |
| ID# | ID & | (MW i | LIER | (MM) ] | LIER |
| 11 1 21 -0.0004 | 0.772 1 i 0.0007 | 0.3891 i
1 11 1 31 0.0000 | 1.000 | i -0.0001 1 0.9681 1
| 11 | 41 0.0002 | 0.958 | ! -0.0004 | 0.7911 i
i 11 5 | 0.0000 | 1.000 1| { 0.0000 | 0.9961 i
I 11 1 6§ 1 0.0000 | 0.999 | i 0.0003 | 0.8821 i
| 11 1 71 0.0000 | 1.000 1| | 0.0004 1| 0.8141 f
I 11 | 8 | 0.0005 | 0.707 1| i 0.0003 1 0.9101 !
| 11 9 | 0.0002 | 0.936 | ! 0.0007 | 0.3811 {
! 11 | 12 1 0.0001 | 0.990 | i 0.0003 | 0.8661 1
| 11 i 13 | 0.0000 ¢ 0.999 | i 0.0003 | 0.8321 i
| 11 4 14 | 0.0000 | 0.999 1| | 0.0004 | 0.8051 |
| 11 | 15 | 0.0000 1 1.000 1| [} -0.0001 1| 0.9841 i
| 11 1 16 1 0.0000 | 1.000 1 { 0.0001 | 0.9711 i
| 11 1 17 1 0.0000 | 1.000 | { 0.0000 | 1.0001 |
| 111 18 | 0.0000 | 1.000 | i 0.0001 | 0.9841 I
| 11 | 19 1 -0.0001 | 0.983 | | 0.0001 | 0.9681 i
| 11 22 1 -0.0001 1 0.985 1| | -0.0001 1 0.9691 {
] 11 1 23 1 0.0000 | 0.999 | i 0.0002 | 0.9571 |
i 11 24 | 0.0000 | 0.998 | 1 0.0003 | 0.9061 1
| 11 1 25 i 0.0000 | 1.000 1| i 0.0000 | 1.0001 |
{ 11 4 26 | 0.0000 | 1.000 | i 0.0000 | 0.9991 f
i 11 1 27 1 0.0000 | 0.997 1 | -0.0002 | 0.9521 4
] 11 | 28 | 0.0000 | 0.999 | | 0.0001 | 0.9891 i
i 11 | 29 | 0.0003 | 0.907 | ! 0.0004 1 0.7771 |
] 11 1 32 1 0.0000 | 1.000 | i -0.0002 1 0.937! i
i 11 33 | 0.0000 i 1.000 i i 0.0000 | 1.0001 |
| i1 | 34 | 0.0000 | 1.000 | { 0.0000 | 1.0001 |
| 11 | 35 | 0.0000 ! 1.000 | § 0.0000 | 1.0001} |
] 11 1 36 1 0.0000 | 1.000 | i 0.0000 | 1.0001

I 11 | 37 | -0.0001 | 0.977 | | -0.0004 | 0.8081 I
{ 111 38 | 0.0000 1§ 1.000 1| i 0.0000 | 0.9991 |
I 11 | 39 | 0.0001 | 0.986 | | -0.0001 | 0.9931 !
i 11 1 41 | -0,.0001 | 0.975 1| | ~0.0001 | 0.9851 |
i 11 1 42 1 0.0000 | 0.997 | i 0.0004 | 0.8251 i
| i1 | 43 | 0.0003 | 0.894 | i 0.0003 | 0.8731 |
| 11 4 44 | =0.0001 | 0.994 1| i 0.0002 | 0.9261 |
{ i1 1 45 | -0.0003 i 0.871 | i ~-0.0002 | 0.9561 i
i 11 | 46 | =0.0001 1| 0.977 4 i ~-0.0003 | 0.9061 |
| 111 47 | 0.0099 | 0.000 | i 0.0000 | 0.9981 i
i 11 48 | 0.0003 | 0.847 | | 0.0000 | 0.9981 |
i 11 1 49 | 0.0001 | 0.977 | I 0.0002 | 0.9561 I
| 11 1 51 1 0.0000 | 0.997 1 { 0.0000 | 1.0001 |
| 11 1 52 1 0.0001 1| 0.992 1 i 0.0002 1 0.9441 |
I 11 1 3 | -0.0002 1 0.948 | i 0.0001 | 0.9801 |
| 11 1 54 | 0.0003 | 0.885 | | -0.0002 | 0.9541 {

o o o G e S e 2 S e e S S D B P G B A TR T P G e S ek W e S 0 e W S WS D WS N G S S D T D G O e e D D G S S G e
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SAMPLE OUTPUT
Talbe 9: Robust Estimator for Qutlier Dectection

Using 10 mm Blunder
| PHOTO | POINT | VX | WEIGHT | OUT- I VY | WEIGHT | OUT- |
1 ID# 1 ID# | (MW ' { LIER | (MM) ( | LIER |
I 11 1 2 1 -0.0008 |  0.365 I I 0.0007 |  0.2371 I
[ 11 1 31 0.0000 | 1.000 | I -0.0002 | 1.0001 [
i 11 | 41 0.0002 I 1.000 | | -0.0004 |  0.398I I
1 11 | 51 0.0000 I 1.000 | i 0.0000 I  1.0001 I
I 11 4 61 0.0000 !  1.000 | i 0.0003 | 1.0001 |
I 11 1 71 0.0000 | 1.000 | i 0.0005 |  0.3181 I
I 11 | 81 0.00081  0.336 | | 0.0002 I 1.0001 I
v 11 | g1 0.0002 | 1.000 | i 0.0007 {  0.2301 |
i 11 | 12 1 0.0001 | 1.000 | I 0.0003 |  1.000] I
i 11 1 13 1 0.0000 | 1.000 | I 0.0005 |  0.3511 I
I 11 1 14 | 0.0000 | 1.000 | i 0.0005 | 0.3201 i
1 11 4 15 | 0.0000 | 1.000 | i ~0.0001 | 1.0001 {
: 11 1 16 1 0.0000 | 1.000 | I 0.0001 |  1.000l I
! 11 17 1 0.0000 ¢ 1.000 1 i 0.0000 | 1.0001 f
| 11 1 18 i 0.0000 | 1.000 1§ i 0.0001 | 1.0001 i
f 11 i 19 t -0.0001 | 1.000 | i 0.0001 | 1.0001 [
i 11 1 22 t - -0.0001 | 1.000 | | -0.0001 | 1.0001 i
[ 11 1 23 i 0.0000 | 1.000 | i 0.0002 |  1.000] I
i 11 4 24 | 0.0000 | 1.000 1 i 0.0003 | 1.0001 I
I 11 | 25 | 0.0000 | 1.000 | i 0.0000 | 1.0001 I
i 11 1 26 1 0.0000 | 1.000 | f 0.0000 1.0001 I
i 11 1 27 1 0.0000 | 1.000 | I -0.0002 |  1.000l i
i 11 | 28 | 0.0000 | 1.000 1 I 0.0001 f 1.0001 |
i 11 | 29 | 0.0003 |  1.000 | I 0.0004 |  0.4191 |
I 11 | 32 1 0.0000 !  1.000 | | -0.0002 | 1.0001 |
I 11 | 33 1 0.0000 | 1.000 | I 0.0000 | 1.0001 I
| 11 34 1 0.0000 | 1.000 | | 0.0000 | 1.0001 i
| 11 1 35 | 0.0000 | 1.000 1 i 0.0000 | 1.0001 i
! 11 | a6 | 0.0000 I 1.000 | I 0.0000 | 1.0001 i
[ 11 | 37 1 -0.0001 | 1.000 | I 00005 |  0.302l I
| 11 | 38 | 0.0000 | 1.000 | | ©.0000 |  1.000l :
i 11 | 39 1 0.0001 | 1.000 | I -0.0001 | 1.0001 |
f 1 1 41 | -0.0001 | 1.000 | I 0.0000 |  1.000! |
| 11 1 42 1 0.0001 | 1.000 1 | 0.0004 |  0.3911 |
| 11 | 43 0 0.0004 | 0.441 1 | 0.0003 I 1.0001 <
{ 11 1 44 | -0.0001 | 1.000 | I 0.0001 | 1.0001 [
! 11 1 45 | -0.0003 |  1.000 | | -0.0002 |  1.000! !
I 1 1 46 1| -0.0001 |  1.000 1 I -0.0002 | 1.0001 4
! 11 1 47 | =10.0000 1  0.000 | i 0.0001 | 1.0001 I
i 11 1 48 | 0.0003 |  1.000 I | -0.0001 |  1.000l I
! 11 1 49 1 0.0001 | 1.000 | I 0.0002 | 1.0001 |
I 11 1 §1 1 0.0001 | 1.000 | I 0.0000 ! 1.0001 1
I 11 | $2 | 0.0000 I 1.000 | I 0.0002 | 1.0001 1
! 11 1 53 1 -0.0002 | 1.000 | i 0.0001 | 1.0001 |
[ 11 1 54 | 0.0004 |  0.462 | | -0.0002 | 1.0001 (

o o 0 2 S i O e T e G B T D D O T T T G D T D U T T S e o o Y D D 0 G T T D D D S o S oS e
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