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ABSTRACT 

Photogrammetry is used to determine the traj ectories of moving obj ect 
points through time. The information related to the motion of the 
object points has been integrated with the photogrammetric observation 
campaigns. This combined approach is equivalent to the estimation 
process of dynamic filtering. The mathematical formulation is presented 
and illustrated with a numerical example. This method improves the 
estimation of position and accuracy of the object points compared to a 
single photogrammetric solution. 

INTRODUCTION 

Photogrammetry plays a major role among the geometric methods of 
displacement monitoring. Usually, a deformation area is represented by 
a series of detail points. Photographs taken at different time 
intervals (multi -temporal campaigns) provide instantaneous records of 
the three-dimensional positions of these points. Positional differences 
between those instants in time enable us to determine the movement of 
these points in the space domain. 

The time factor is only used in relating the static "snapshots" which 
are used to determine the displacements (Figure 1). The position 
vectors ret) and ret + 1) are computed solely from individual 
photogrammetric campaigns without any interrelation between the two 
observation epochs. 

However, the object points change their position progressively in time, 
stimulated by some physical cause. Thus in a time varying situation, 
the dynamic characteristics of the displacements can be taken into 
account by expressing changes in the parameter vector as a function of 
time in addition to changes due to new observations. 

If the functional relationship between points at successive epochs is 
adequately known, we can compute a preliminary estimate of the position 
vector ret) based on its previous spatial position ret - 1) (see Figure 
2). Similarly, the variance-covariance matrix of ret) can be estimated 
based on the uncertainties of ret - 1) and of the dynamic parameters 
expressing the transition to state ret). 

PHOTOGRAMMETRIC FILTERING 

The position of a point at an instant in time is characterized by two 
models, namely the static photogrammetric model, and the dynamic 
prediction model. A combination of these two types of models leads to a 
photogrammetric filtering process, with which the physical situation at 
an instant in time can be described. 
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Figure 1 Determination of displacements ~n a static mode. 
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a) The "static" photogrammetric model consists of three types of 
observation equations together with the relevant weight matrices. 

i) The photo-coordinate measurements are related to the unknown 
parameters by the extended collinearity equations, in a 
photo-variant mode: 

A R, ( 1) . 
where 

F1 (~I ' xE' ~o) p' Pp 

xI is the vector of the unknown parameters of 
interior orientation 

x
E 

is the vector of the unknown parameters of 
exterior orientation 

Xo is the vector of the unknown parameters of 
object coordinates 

R, is the vector of the observed photo-coordinates 
pp is the weight matrix of the observations. P 

ii) The ten elements defining the interior orientation for each 
photo-frame,namely x , y , c, a

1
, ••• , a

7 
are introduced as 

weighted parameter c8nstr~ints to avoid ill-conditioning: 

(2) 
where 

iii) 

R, is the vector of the initially given elements 
I of interior orientation; 

PI is the weight matrix of the observations. 

The coordinates of the object are 
parameter constraints. Although 
required control points to avoid 
points can be utilized as such. 
have the general form 

also treated as weighted 
this is necessary for the 
datum indeterminancies, all 

The observation equations 

F (A ) - R, wi t h R, == x ( 0). P ( 3) 
where 

3 Xo - 0' 0 0' 0 

R,O is the vector of the initially given object 
coordinates and 

Po is the weight matrix of the observations. 

b) The "dynamic" prediction model consists of two equations. 

i) The propagation of the parameter vector through time is 
determined as: 

~(t) == T(t,t-l) x(t_l) + ~(t, t-l) (4) 
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ii) The propagation of errors of the parameter vector through time 
is determined by: 

(5) 
where 

C'" is the predicted covariance matrix of x 
c~«t)l) is the covariance matrix of the previ~S~ state 

x t- '" 
parameter x t-l A 

Q( ) is the covariaAce ~atrix of z(t,t-l) and generally 
t, expresses the uncertainty of the prediction model. 

At a particular instant of time we have an a priori knowledge of the 
parameters whose a priori weight matrix is non-zero (see equations (4) 
and (5)). Thus we can write 

x = x 9), + 0 x 
(t) (t) 

(6) 

Omitting the time subscript t and using the subscript I for the dynamic 
model, equation (6) becomes 

X + 0 x'" 
I I 

or in a general linearized form 

where 
A Ox + W = 0 (AI = I) 

I II' 

Al = af is the first design matrix, 
ax 

oX
I 

is the solution (correction) vector 
WI is the misclosure vector. 

The weight matrix corresponding to equation (7c) is 

(7a) 

(7b) 

(7c) 

(7d) 

At the same instant of time t the photogrammetric measurement model has 
the following general linearized form 

where 

r~I ApE ~O 
I 

0 A = 0 AOB 2 

All 0 0 
and 

~I 
dF 

~E 
dF I , a F I, 1, ApO All 

aX
l dX

E axo 

T T T T 
V2 = [vp Vo VI ] , 

are the residual vectors corresponding 
equations F

I
, F

2
, F

3
, respectively. 

T T T T 
w2 [wp Wo WI ] , 
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(8a) 

a F 2, A = a F 3 
OB -

dXI dXO 

to observation 



wP' wI' Wo are the misclosure vectors corresponding to the observation 
equations F1, F2, F

3
, respectively. 

The weight matrix corresponding to equation (8a) is 

o 0 

(8b) 

The combined linearized mathematical model based on equations (7c) and 
(8a) is 

(9a) 

(9b) 

Assuming logically that there is no correlation between the two sets of 
measurements, the combined weight matrix for the model of equation (9a) 
is 

(9c) 

The solution vector 0 x is not partitioned because both 
observations are related to the same unknown parameters. 
estimated by applying the least squares criterion: 

min 

subsets of 
It can be 

(10) 

In reality, measurements become available sequentially, and/or a priori 
estimates of the solution vector may be available (e. g., equ. (4)). 
Therefore, it is preferable and practical to determine new estimates 
based on the new measurements (e.g., equ. (1), (2), (3)) in terms of 
previous solutions. This is possible by deriving sequential expressions 
of the least squares solutions [Wells and Krakiwsky, 1971; Junkins, 
1978]. Hence, 

ox = 
-1 -1 T (lla) -N 1 q1-N1 A2k2 

where 
(P -1 + A N -lA T)-l -1 k = (-A2N1 ql + w2) (lIb) 2 2 2 1 2 

-1 T -1 -1 (llc) Nl = (A1 P1A1) = PI 

T 
= P

1
w1 (lld) q = Al P1w1 1 
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It is known that 

(12) 

where xl is the solution for the parameter vector when the 
dynamic model only is used. If we set o~ = ox which means 
that the unknown parameters are estimate~ after considering 
the photogrammetric observation model and using equs. (lIb) -
(12), then equ. (lla) becomes 

where 

Since we assumed non-linear models for the sake of generality, the final 
solution x is determined from both the dynamic and the combined model. 
When the dynamic model is used, then 

(0) 
x + (14) 

where k is the required number of iterations. 

~"'hen the combined model is used, then, 

= x(O) 
m 

(0) 
m 

A A A 2::0 A 
2:: ,. 

+ ~x.) x = x
2 = x2 · x + (o-'X

l 
. 

i=l 1 i=l 1 
1 

L> or x ~ x = x + 
2 1 

(15) 

with m being the required number of iterations. 

If we substitute the expression ~x from equ. (13b) into equ. (15) and 
linearize each time about the most recent estimate, we obtain an 
important recursive formula for the ith iteration. 

A T T -1 x2 ,i = x l -C l A2 [C 2+A2Cl A2 ] [A2 (x2,i-l-xl) + w2] (16) 

A A A A (0) ( h hI.. ) where x 2 ,O = Xl and Xl = x value at w ic .inearlzatlon occurs 

This expression states clearly that when a new set of observations is 
added for the determination of the parameter vector, the resulting new 
parameter vector is equal to the parameter vector estimated from all 
previous observation equations plus a correction term. Applying the law 
of error propagation to equ. (16), a sequential form of the 
variance-covariance matrix C of the estimated parameter x is derived. 
Thus, x 

(17) 
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The dynamic model provides a recursive estimation process through time 
for the unknown vector of parameters. Therefore, in the above 
~equential expressions, the time is considered when the parameter vector 
x

2 
. changes not only as new observations become available (term 6x) but 

aIs5 as function of cause in time (term x ). In terms of modern 
optimal estimation theory this represents a filtering process, referred 
to here as photogrammetric filtering. An examination of equs. (16) and 
(17) derived from the sequential weighted least squares adjustment with 
time consideration reveals, that they have the same appearance and 
therefore are mathematically equivalent to the expressions given for the 
iterated extended Kalman filter for non-linear dynamic systems (Gelb, 
1974). 

Examining also the structure of these equations with respect to existing 
familiar forms and computational as~e~£s involved, we observe the 
following for the term (C

2 
+ A

2
C A

2
) ; Firstly, the sequence of 

matrices involved dOTs _~ot resembIe the well known form of the 
coefficient matrix A C

2 
A2 of the unknown parameters of the least 

squares adjustment. ~econdly, the order n of the matrix to be inverted 
is much larger than the order u used in a regular photogrammetric bundle 
block adjustment (n, u are the numbers of observations and unknowns 
respectively). 

At this point we invoke a matrix inversion identity given in Henderson 
and Searle, (1981) which has been found also in Mikhail and Helmering, 
(1973) and Kratky, (1980), namely: 

T -1 -1 -1 T -1 -1 T -1 
(C

2 
+ A

2
C

1
A

2
) = C

2 
[I-A2 (C 1 +A2 C2 A2) A2 C2 ] (18) 

Also, a new notation is adopted to conform with Gelb's (1974) notation. 
This provides a better understanding of the time factor (Schwarz, 1983) 
and a more explicit distinction between predicted and updated estimates. 
The subscript t implies the final estimation at time t, which is 
obtained after applying the contribution of the measurements of the 
second model. The symbol (-) indicates predicted values based on the 
dynamic model immediately prior to time t. The symbol (+) indicates 
updated values due to the contributton of the observations immediately 
following the time t. 

Applying equ. (18) and this notation on equs. (16) and (17), the final 
updated expressions are derived (Armenakis, 1987): 

x .(+) = x (-)-C (-)A TC -IG [A (x . 1(+)-x
t

(-))+wt ] 
t,l t t t t t t,l-

(19) 

and C
t

(+) [I-Ct(-)AtTCt-lGAt]Ct(-) 

G = I _ A (C (_)-1 + A TC -IA )-IA TC -1 
t t t t t t t 

(20) 

where 
(21) 

These equations represent one formulation of the iterated extended Bayes 
filter. The use of a different matrix identity (equ. (18)) results in a 
different expression for the so-called Bayes filter (Morrison, 1969; 
Vanicek and Krakiwsky, 1986). 
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SEQUENTIAL ESTIMATION OF THE STATE INFORMATION 

Practical considerations and computational efficiency led to the use of 
a reduced measurement model, i.e. the object coordinates have been 
selected to serve as state parameters for the filtering algorithm (equs. 
(19), (20». More details about the different situations and approaches 
examined can be found in Armenakis, (1987) and Armenakis and Faig, 
(1987) • This solution concentrates on the main interest, the 
determination of the trajectories of the object points. It involves the 
following general steps: 

Step 1. 

Step 2. 

Step 3. 

Solve for the parameters xE' xI of the exterior and interior 
orientation by the extendea space resection. 
Consider x and x as known and form the reduced 
photogramm~tric m~del where only the coordinates Xo of the 
object points are unknown parameters. 
Determine the optimal position and accuracy estimates of the 
current object coordinates using the prediction and reduced 
observation models in the final updated equations (19) and 
(20). 

The above steps are executed in an iterative manner • 

"I'" 

.. ,.. .. 

-r- ..... 

.. ..-

... control object points 

.. other object points 

• 
.. ,.. .. 

.. 
--I'" 

.. 

.. 
--

Figure 3 Plan diagram (not to scale) of the object-camera configuration. 
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NUMERICAL EXAMPLE 

The photogrammetric filtering process was incorporated into the program 
'SPDM (Sequential Photogrammetric Displacement Monitoring; Armenakis, 
1987) in order to perform the multi-temporal point estimation. 

The system was evaluated with the aid of a laboratory test. The test 
model consists of five parts and has the following dimensions 1.40 m x 
0.90 m x 0.25 m. Each part can accommodate a different deformation, 
while several points can be moved individually. 

Two photogrammetric observation epochs were utilized. For the second 
epoch, single point displacement and subsidence deformation was 
introduced into parts of the model. The maximum magnitude of 
displacements was 1 cm. 

Convergent photography with 100% overlap was taken from above the four 
corners of the test field with a Canon AE-1 non-metric camera with 
standard lens (f=50 mm) with an approximate photo-scale of 1: 45 (see 
Figure 3). 

The photo-coordinates of the image points of all eight photographs were 
measured on the precision analogue stereo-plotter Wild A-10. Two sets 
of measurements were performed resulting in an average accuracy for both 
x- and y- photo-coordinates of ±12 m. The accuracy of the surveyed 
object points was ±1-2 mm. 

The bundle adjustment program PTBV (Photogrammetric Triangulation by 
Bundles-Photo-Variant; Armenakis, 1987) was utilized to estimate the 
position and accuracy of the object points in epoch 1. For the second 
epoch, the predicted obj ect coordinates were estimated through 
approximate photogrammetric means (without the use of additional 
parameters) due to lack of a systematic and controlled mechanism causing 
the displacements. Their uncertainty was introduced via the diagonal 
uncertainty matrix Q (q .. = 2.25E-04m2 ). 

11 

The sequential estimation of the state information (position and 
accuracy) was carried out using photogrammetric filtering with SPDM. 
Besides SPDM, the program PTBV was run as well. The statistical 
information obtained from both the combined and single epoch bundle 
block adjustment approaches is given in Table 1. 
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Table 1: Statistical information of photogrammetric 
adjustments (Epoch 2) 

Mean Value Standard Deviation 
Residuals (SPDM) (PTBV) (SPDM) (PTBV) 

photo x(rom) -0.001 0.000 ±0.010 ±0.007 
photo y(rom) -0.002 0.000 ±0.012 ±0.010 
check-points X (m) 0.000 0.000 ±0.002 ±0.002 
check-points Y (m) 0.001 0.001 ±0.002 ±0.002 
check-points Z (m) 0.002 0.002 ±0.009 ±0.009 
control-points X (m) 0.000 0.000 ±O.OOI ±O.OOI 
control-points Y (m) 0.000 0.000 ±O.OOI ±O.OOI 
control-Eoints Z (m) 0.000 0.000 ±0.003 ±0.004 

a-posteriori variance factor 
(SPDM) : 0.lSlE-09 (PTBV) : 0.19lE-09 

mean value of the standard deviations of the 
non-control points 

(SPDM): 0 ±0.3 rom o = ±O. 3 rom 0 ±0.4 rom 
(PTBV): =-X ±O.S mm (fY - +0 8 oi ±1.2 u rom rom 

X y - - • 

Finally, the differences in displacements between geodetic results and 
photograrometric ones (from SPDM) were compared at 16 points, resulting 
in average differences of 

aX -0.4 rom, 8 Y =0.1 mm, 8 Z -0.9 mm 

CONCLUSIONS 

The comparison and evaluation of the results between the single-epoch 
bundle adjustment and photograrometric filtering based on this experiment 
and a number of others described in detail in Armenakis (1987) led to 
the following conclusions: 

1) 

2) 

3) 

When a strong and well-controlled bundle geometry exists, the 
estimated positional parameters (orientation elements of the 
exposure stations as well as object coordinates) tend to be 
similar. This is illustrated in Table 1 where the mean values and 
the standard deviations of the examined residuals and the 
a-posteriori variance factors do not significantly differ. The 
imposition of additional object constraints is reflected in the 
slightly larger standard deviations of the photo-residuals as well 
as in slight differences in the estimated elements of interior 
orientation. 

The estimated positional parameters tend to differ for the two 
approaches in cases of weak bundle geometry and/or poor datum 
definition. If the predicted information (object coordinates and 
their accuracies) is reliable, then photogrammetric filtering 
provides better absolute results. 

The use of photogrammetric filtering provides a significant 
improvement to the absolute accuracy of the obj ect coordinates. 
This is shown in Table I where the mean values of the standard 
deviations of the non-control points are smaller than their 
corresponding values from the single-epoch bundle adjustment 

approach. 
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Generally, it can be stated that photogrammetric filtering contributes 
to a better estimation of position and accuracy, since each of the 
underlying models plays the role of a safeguard and complements the 
other. The recursive nature of the approach has great potential in 
real-time photogrammetric applications. 
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