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Comma VIllI 

Abstract: A procedure is presented to trace automatically corresponding points (matching) in 
CAESAR forward and downward looking images in the land mode. With an interest operator 
points suitable for matching are indicated in one image. By cross correlation the corresponding 
points in the other image are traced. Test results are given and improvements of the procedure 
discussed. The method is probably also suited to determine tie points in the overlap of satellite 
images for mozaicing. 

1 Introduction 

Many remote sensing data, both from aircraft and satellite s04rces, are at present in digital 
format. Since a lot of restoration, enhancement and feature extraction operations are much 
easier carried out in digital domain than in analogue domain, the potential applications of digi­
tal image processing techniques in remote sensing are many. This paper is devoted to the tra­
cing of corresponding points in conjugate image pairs, using digital signal matching techniques 
-in particular cross oorrelation- in combination with an interest operator to find suitable corre­
lation points. Suitable ·points are (sub)pixels which show high grey value variances in all direc­
tions, e.g. corners, blobs and spots. The method is adopted from Moravec (1977), where it origi­
nally is developed for the guidance of autonomous robots by vision. 

Corresponding points are mappings of the same object point in different images. Matching is 
a general problem and occurs in many vision applications. In photogrammetry, e.g., it is, neces­
sary to obtain a surface recovery from stereo pairs of images and to perform aerotriangulation. 
The last years much effort is spend and many techniques are developed to obtain digital eleva­
tion models automatically by digital matching methods. Lemmens (1988) gives a survey. 

Very often, e.g. in the case of satellite imagery and flat areas, the imaged object space may 
be considered as two-dimensional (2-D); matching is necessary to obtain corresponding points in 
the overlap of the images for mozaicing and for the overlay of multitemporal images. In digital 
remote sensing usually points are manually indicated with a cursor. Just pixel level accuracy is 
achieved. In the present investigation tracing of corresponding points is necessary to overlay the 
downward with the forward looking images of the CAESAR airborne multispectral scanner. The 
connection must be performed very accurate, so two requirement have to be fulfilled: 

- the network of corresponding points should be dense and regular; 
- corresponding points in the two images have to be identified at subpixel level. 

Manual identification isn't appropriate to accomplish the two tasks, so the assistance of digital 
matching is called in. 

Matching consists of the following three stages: 
1 Distinction check: selection of distinct points, i.e. points which differ significantly from 

the neighbouring points; we call them characteristic points; 
2 Similarity check: selection of candidate corresponding points in the image sequences, using 

some similarity measure; 
3 Consistency check: testing of the correspondence assignments using some global model. 

Remarks: 
- In feature matching, characteristic points are traced in both images. According to the ap­

proach of Moravec (1977), we just search for characteristic points in one image; 



- Correspondence analysis is performed by cross correlation, shifting a target area over 
search windows in the other image; 

- The similari ty check just yields local consistency, but no global consistency, i.e. because of 
imperfections in operators and similarity measures, the result will be ambiguous. In stereo 
imagery the global consistency check is executed by introducing an object model: very 
often just a smoothness constraint. The present problem shows much resemblance with 
stereo matching. Because of irregular platform movements, scanner data show, contrary to 
photographs, non-rigid image geometry. So, the mapping geometry is unknown and can just 
be approximated by some geometric transformation model (GTM), e.g. a second or third 
order polynomial. The parameters are adjusted by, for instance, flight path registration. 
The consistency check is executed by assuming, according to the smooth surface model in 
stereo matching, that the imaging geometry is varying smoothly. 

Before treatment of the procedure some brief notes are devoted to the CAESAR scanner. 

2 The CAESAR scanner 

CAESAR is an airborne multispectral scanner. The acronym reads: CCD Airborne Experi­
mental Scanner for Applications in Remote Sensing. The scanner is jointly built by the National 
Aerospace Laboratory NLR, and TNO Institute of Applied Physics, TPD Delft, as a part of the 
Dutch national remote sensing programme (Bunnik et ale 1986). The scanner is composed of 
commercially available silicium semiconductors of the same type as used in the SPOT HRV's. 
The total length of the CCD linear array is 1728 elements or 22.46 mm, which leads, together 
with the focal length of 50 mm, to a total field of view of 25.70

• Since the size of each element 
is 13x13 micrometer, the instantaneous field of view (IFOV) is 0.013/50 = 0.26 mrad, which re­
sults in a ground resolution of 0.26 H, with the ground resolution in meter and H, the flying 
height, in km. CAESAR is developed for both land and sea applications. The spectral resolutions 
for land and sea observations are defined by user requirements. They are listed in table 1. 

Land observation Sea observation 

Band spectral range Band spectral range 
(micrometer) (micrometer) 

1 0.535 - 0.565 1 0.400 - 0.420 
2 0.655 - 0.685 2 0.435 - 0.455 
3 0.845 - 0.895 3 0.510 - 0.530 

4 0.555 - 0.575 
5 0.620 - 0.640 
6 0.675 - 0.695 
7 0.770 -0.800 
8 0.990 - 1.050 

Table 1 

CAESAR consists of a cluster of four camera's. Three camera's point downward and one 
forward with an off-nadir view angle of 520 (see fig. 1 a) The forward looking camera results 
from studies on the non-Lambertian behaviour of vegetation canopies. Vegetation types can be 
better distinguished by simultaneous observation from different viewpoints. Each camera 
comprises three CCD arrays in the focal plane (see fig. 1 b). The center array cuts the optical 
axis, i.e. points nadir •. _ The other two are gositioned at each side of the center array, such that 
their viewing angles are -11.50 and 11.5 , respectively. For land applications just the center 
array's are used, employing exchangeable filters to attain the required spectral bands. For sea 
applications all 9 arrays of the downward modules are employed; band 8 is recorded twice. The 
three arrays of the forward looking module point 45 0 , 520 and 590 off-nadir. 

The forward looking and downward looking images have to be compared, so they have to be 
brought into the same reference system. Positional data, consisting of flight velocity and plat­
form attitude, is auxiliary recorded during flight; the platform attitude by an intertial naviga­
tion system. The flight data determine the image corrections, which are carried out by the 
software package OPTIPARES. The images are resampled and rescaled by interpolation. 
Although the positional data is, in principle sufficient to link forward and downward looking 
data, the accuracy is just enough to reach a first order approximation. To achieve higher 
accuracies, tie points together with a geometric transformation model (GTM) have to be 
introduced. To arrive at this aim and to reduce manual interference we investigated the 
capabilities of digital matching, subject of the next section. 
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3 The Digital Matching P:rocedure 

As sketched in the introduction matching comprises 3 stages: (1) distinction check, (2) simi­
larity check and (3) consistency check. Distinct or characteristic points are searched by the 
interest operator described by Moravec (1977). The similarity check is performed by cross 
correlation. Subpixel level is achieved by approximating the discrete correlation function by a 
quadratic expression. The consistency check is performed by the B-method of testing (Baarda, 
1968). For the present procedure, the assumptions are: 

- the object space is a plane, O.e 2-D) 
- the geometric differences between the two images are, after correction with OPTIPARES, 

smooth; 
- the objects are rigid, i.e. they don't change form during successive recordings .. 

In separate subsections the three steps will be described in more detail. 

FOCAL LENGTH 
(50mm) 

""'--- 3MODULES 

FLIGHT ALTITUDE 
(2·7km) 

Fig. 1 a CAESAR camera con­
figuration: three camera's point 
nadir and one looks forward. 

Fig. 1 b Sketch of the downward looking 
part. In each focal plane 3 CCD linear 
array's are mounted. 

3.1 Distinction Check 
Characteristic points in digital images are automatically traced by interest operators. In the 
course of time, several operators are developed. Their design depend on the wayan image is 
looked at. Hannah (1974) considers an images as a 2-D signal and defines characteristic points in 
terms of autocorrelation, characteristic points show a steep autocorrelation in all direction. 
Moravec (1977) and Forstner (1986) consider the grey values in a statistical manner; charac­
teristic points show high variances in all directions when moving away from the point. Dreschler 
(1981) looks at a grey value distribution as a continuous surface in a 3-D space. Characteristic 
points are defined in terms of principal curvatures kl and k2 and the Gaussian curvature: 
K ::: kl x k2. We adopted the approach of Moravec (1977). 

Grey value variances in some directions are computed, in particular the four main directions 
are chosen: rows, columns and the two diagonals. The variance in each direction is computed as 
the sum of squared grey value differences between adjacent pixels. The original Moravec opera­
tor is defined in a 5 x 5 window: 

tvJ(i,j.) 

1 2 1 2 
::: - L L ( g(i+k,j+l) - g(i+k, j+l+l) ) 

20 k:::-2 1:::-2 

1 1 2 
::: - L L ( 9 (i +k , j + 1) - 9 (i +k + 1 , j + 1) ) 2 

20 k:::-2 1:::-2 

1 1 1 2 
16 L L ( ( 9 ( i +k , j + 1) - 9 ( i +k + 1, j + I + 1) ) 

k:::-2 1 =-2 

1 1 1 
= - L L ( 9 (i +k , j + 1 + 1) - 9 (j +k + l,j + 1) ) 2 

16 k=-2 1 =-2 
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The operator response M is defined by: M ::: min(M i ), i ::: 1, •• ,4. 

If M exceeds a certain threshold Mt , the pixel position (i,j) is a characteristic point. Since 
characteristic points will cause also hIgh responses in a neighbourhood around the point, non­
maximum suppression has to be carried out. For multispectral data the single grey value opera­
tor can be modified in two manners (Oreschler-Fischer, 1987): 

- the operator is applied to the n distinct spectral bands, leading to Mk, k:::1, •• ,n. The multi­
spectral response is the maximum of the responses in the distinct bands: Mc ::: max(Mk); 

- The directional variances are computed for the spectral band vectors. The squared diffe-
rences of the vectors are calculated. The response should exceed a threshold. 

For the CAESAR scanner, the multispectral approach is useful when more equally directed mo­
dules are used, i.e. when the terrain is recorded in several spectral bands from the same view­
point. Also when the matching procedure is applied for mozaicing of digital satellite images, 
e.g. Landsat MSS and TM, and Spot, the modification will show profit. 

The Moravec operator is easy to implement and computationally efficient, but it has also 
some disadvantages (Oreschler, 1981): 

- not the real positions of the characteristic points are found, but a shift is introduced, the 
larger the window size, the larger the shift; 

- the operator is sensitive to low resolution features, i.e. small points cause an extended 
operator response; 

- the operator is non-rotational invariant. 
Fig. 3a shows the characterist ic points On white) detected by the single grey value Moravec 
operator in a CAESAR downward looking image, spectral band 0.445 ]J m. The threshold Mt is 
2500, which number is experimentally determined. The shift of the points is clearly visible. 

3.2 Similarity Check 
Once characteristic points in one image are determined, the corresponding points in the other 
image have to be traced. We employ cross correlation under the assumption that there is just a 
shi ft between the two images, i.e. the object space is a plane and the geometric differences 
between the two images are smooth. Around the characteristic point a target area is defined, 
for instance a 5x5 window. The task is to find the corresponding window in the other image. The 
search space is confined by the positional data using the plane and smoothness assumption. The 
target area is shifted over the search area (see fig. 2). The cross correlation R is assigned to the 
mid-pixel of the target area and the mid-pixel of the concerning window in the search space. 
This leads to a discrete 2-D cross correlation function. The simplest method is to choose the 
mid-pixel of the most resembling window as corresponding point. However, just correspondence 
at pixel level is achieved. To arrive at subpixel level, the R's are considered as discrete samples, 
taken from a continuous cross correlation function. The function is approximated by a second 
order polynomial. The maximum of the function defines the position which resembles the most 
the mid pixel position in the target area. 
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2 cross-correlation: a 5x5 target area Cleft area, the hatched pixel is mid 
pixel) is shifted over a search space (right part) with increments of 1 pixel. In this 
manner a discrete correlation function is determined. The maximum of the func­
tion indicates the corresponding point (here indicated as hatched pixel). 



When g.t denotes the greyvalues of the pixels in the target ares (for a 5x5 window i=25), and 
giS those o~ a search area in search space, the cross correlation Rts between the target and the 
search area is defined by: 

L (g i 
t -t)( S -8) - g g1 - g 

Rts = (3.2) 

~~ ( t -t)2 • L (gi 
s 9s )2' gi - g -

To achieve a computationally more efficient expression (3.2.) is rearranged to: 

(g. t)2 _ 0:: g. t)2/n) • (L 
1 • I 

1 

(3.3) 

It is possible to take account of smooth relief variations by introducing a weight function Wi' 
which favours the central parts of the window at the cost of the border parts: 

L (gi 
t - t)( s 9s

) w .• - 9 gi-I 

Rt8 = (3.4) 

VEj (g. t -t)2 • L ( gi 
s' -s)2 • Wi - 9 w. - 9 1 i 

1 

The shape of the weighting function Wi depends on the expected kind of relief and can be, 
e.g., of Unear or Gaussian form. The discrete RO,j}'s are approximated by a continuous function 
R(x,y). The maximum Rmax at location (Imax,Jmax) and its neigbouring Rls are used to adjust 
the parameters of a second order polynomial: 

R(x,y) 

R(x, y) 
(3.5) 

At a local maximum the derivatives to respectively x and y: dR(x,y)/dx and dR(x,y)/dy, will 
be zero, which leads to the most likely corresponding point: (Xmax' Y ma): 

x = rrax Yrrax = (3.6) 

In the present investigation the polynomial is adjusted by Rm x and four neigbours, two at 
each side. The five observations give rise to a least squares adjusrment to determine the three 
unknown parameters ai or bp i = 0, 1, 2. (Imax' Jmax)' the pixel belonging to Rmax' is taken as 
local origin (0,0). So, for Xmax computation, the least squares adjustment reads: 

R(-2,0) ) 
r i -2 4 

R(-I,O) -1 1 
R( 0,0) = 

l ~ ° ° R( 1,0) 1 1 l R( 2,0) 2 4 
(3.7) 

With R(O,O) = Rmax. For Y max computation a similar expression is achieved. (3.7) expressed as: 
x = A y, the least squares solution reads: 

y = (At Arl At x 

Since for al! poi~ts the same configuration is chosen, the design matrix A is the same for all 
points, so (AAr At can be precomputed to save computation time. Further, for 
(Xmax, Y max) determination, also the computation of aD is superfluous. 

1 



So, applying precomputation, (Xmax' Y max) becomes: 

-2 R(-2,0) - R(-l,O) + R(l,O) + 2 R(2,0) 
X = - 0.7 + I rrex 2 R(-2,0) - R(-l,O) - 2 R(O,O) - R(l,O) + 2 R(2,0) rrax 

(3.8) 

-2 R(0,-2) - R(O,-l) + R(O,l) + 2 R(0,2) 
Y = - 0.7 + J rrex 2 R(0,-2) - R(O,-l) - 2 R(O,O) - R(O,l) + 2 R(0,2) rrnx 

One of the disadvantages of applying an interest operator on just one image becomes appa­
rently clear when the second image contains substantially less local structure (texture) than the 
first image, in which the characteristic points are traced. In that case the correlation function 
is flat and consequently the location of the corresponding point is very insecure. So, as a part of 
the similarity check, besides the magnitude of the cross correlation coefficients, also the nar­
rowness of the correlation function should be checked. A measure for narrowness is the second 
derivative, in case of the above quadratic function: 2 a2 and 2 b2- A large number indicates a 
stezp fu~c~ion. Since a4 and b2 are determined separately, a combined measure, such as· 
(a2 + b2 ) 2 can be applied. Steepness check is not yet implemented in the present investiga­
tion. 

3.3 Consistency Check 
The Moravec operator combined with the similarity check by cross correlation will lead to an 
initial set of possible matches. Due to, primarily, repetitive structures, the initial set of mat­
ches will contain ambiguities, i.e. matches which are equally likely. A global consistency check 
has to be carried out, using some model. Common methods in stereo vision to perform the con­
sistency check are: 

- dynamic programming; 
- relaxation; 
- robust statistics; 

No surface recovery is necessary in our case, just a determination of the geometric trans­
formation parameters. Therefore we suffice with classical hypothesis testing, using the B­
method (Baarda, 1968). 
The aim of testing is to check the validity of a certain null-hypothesis, HO. HO states: 

- there are no gross errors in the observations; 
- the applied GTM is a realistical one; 
- the chosen variance-covariance matrix fi ts the stochastic behaviour of the observations. 

Observations errors are often responsible for HO rejection. Mismatches are inevitable becau­
se of repetitive structures. Also the GTM is a critiCal point, since the common polynomial mo­
dels are just a rough approximation of the real imaging process. An insight into the stochastic 
behaviour of observations can be gained by evaluation of sequences of observations. 

To check the validity of the above null-hypothesis a multi-dimensional overall test is carried 
out. If HO is accepted the above assumptions are right with a certain probability and we are rea­
dy. If HO is rejected first of all the observations are subject of testing. Detected gross errors 
are removed and to avoid disturbance of the design, new measurements should be added. Next, 
HO is tested again. If HO is accepted testing is finished, if not, the GTM is tested. When the 
GTM appears to be okay, but HO is still rejected, the stochastic model has to be checked. 

The common GTM's, e.g. affine and second order polynomials are linear expressions. So, 
without prefatory linearization and without introducing approximate values, the GTM is expres­
sed as a linear system: x = A y, with, x the observations, y the unknowns and A the design ma­
trix. However, matrix A will contain observations: coordinates (X, V), determined in image 2 
(see also (3.10)). So, for error propagation computation and for carrying out the testing proce­
dure, the observations in A have to be split up in a stochastic part (I::..X,I::.. Y) and a non-stochastic 
part (Xo, yO). For this purpose the system should be linearized. But, since the actual GTM will 
just differ slightly from a shift, after linearization the terms of the linear system can be rear­
ranged such that each I::.. X and I::.. Y is additive to the corresponding coordinates in the observa­
tion vector. For (XO, yO) the actual observations (X, Y) are used. Therefore, it isn't necessary to 
linearize the expression; the stochastic parts of (X, Y) are just added to accompanying coordi­
nates in the observation vector. Since it is assumed that the stochastic behaviour of the coordi~ 
nates, determined in both images, is the same, in the testing procedure the variance factor ao L. 

has just to be doubled. 

VII ... 292 



To improve precision and reliability, more observations are taken then there are unknowns. 
So, a least squares adjustment can be carried out. For an affine transformation: 

with: x,y: the coordinates in image 1 
X,Y: the coordinates in image 2 
ai' bi, i=0,1,2: transformation parameters 

the linear system reads for n observations and m unknowns (m = 6): 

x1 1 1 Xl Y1 
0 0 0 aD 

Yl' 0 0 0 1 Xl Y1 a1 

: I 
a2 

= bO 

~~ I 1 X Y 0 0 0 b1 
n n b2 0 0 0 1 X Y n n 

(3.9) 

(3.10) 

(Don1t confuse the coordinates (x,y) and (X, Y) with the symbols x and y for observations and 
unknowns in the linear system.) 

To the observations x a variance-covariance matrix}; x = Qxo 2 is assigned, with 0
0

2 the 
variance factor. The weight coefficient matrix c;r:1 is assumed to ge known. When all observa­
tions are uncorrelated and equally weighted, i.e. f<hey have the same precision, Qx is the iden­
tity matrix, a~ ~an actually be neglected, leading to the standard least squares solu­
tion: y = (At At A x with y denoting estimate of y. For hypothesis testing the variance fac­
tor 0 2 is assumed to be known. The observations may have any arbi trary statistical distribu­
tion, '&ut for the sake of testing they are assumed to be Gaussian distributed. The least squares 
solution of the overdetermined system leads to an estimate y of the unknowns y: 

y = (3.11) 

Y is the best linear unbiased estimate (BLUE) for y. Once y is calculated, the adjusted obser­
vations x become: 

x = A 9; x = x + V (3.12) 

Th2 differences \) = x - x are cfrrections to the observed values (residuals). From ~ an estimate 
a 0 of the variance facter a 0 is computed: 

.... 2 
o 
o = 

",t -1 v Q v 
x 

r 
(3.13) 

with r the redundance, r = n - m; n the number of observations and m the number of unknowns, 
n >m. 

The precision of the estimates V, x and yare determined by error propagation. For testing, 
just the variance-covariance matrix: 

Lx = 0 2 Q.. 
o x 

(3.14) 

and the variance-covariance matrix of the corrections: 

~ v = 0 2 (Q - Q..) 
o x x 

(3.15) 

with: Q.... = A (At Q-l A)-l At 
x x 

are of importance. 
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To check the validity of the null-hypothesis, HO' a multi-dimensional overall test is perfor­
med: 

... 2 
o 

o 

o 2 
o 

; r ; 00 
(3.16) 

with F the critical value of the Fischer distribution and a the probability that HO is rejected 
wrongly. The other terms are already treated in previous parts. 

When HO is rejected, obviously one or more HO assumptions are erroneous. The most likely 
source are gross errors in the observations. Therefore, first the observations are tested, using 
data snooping. Gross error testing is carried out by introducing the conventional alter.native 
hypothesis H i' which states that in the entire observation set x, just one observation Xl has a 
gross error. fo simplify the procedure further, the observations are supposed to be uncorrelated. 
The assumption isn't correct, but the approach has shown to be suited for photogrammetric pur­
poses. The test variate wi becomes now: 

i - v 
w. ;::: (3.17) 

1 i 0 
v 

with vi the correction placed on the observation xi and (J vi the standard deviation of the cor­
rection. wi has a Fischer distribution and is tested as follows: 

if (w.)2 ~ F1 1 
1 - a o ; ; 00 • 

reject Hai (i.e. no gross error in Xl) 

else 

accept Hai (i.e. the observation set contains a gross error, remove the observation with the 

largest wi) 

endif 

When, after gross error removal, HO is still rejected, the GTM has to be checked. For instan­
ce, the applied affine transformation IS replaced by a second order polynomial, and the testing 
procedure is executed again. If still HO is rejected and no gross errors are detected anymore, 
the stochastic model is probably erroneous. For instance, the weight matrix is not the assumed 
identity matrix because the observations are correlated or not measured with equal precision. 

In the B-method of testing, the choice of the testing parameters a and f3 is such that a cer­
tain error is detected with the same probability by the overall Ho-test and the w-test. So, if HO 
is accepted, no further testing is actually necessary. In practice, however, very often data snoo­
ping is performed additionally, regardless whether HO is rejected or not. 

Image 1 Image 2 Image 3 

Fig .. 3: Three downward looking images. Characteristic points are traced 
in image 1 and searched in the other two images by cross correlation. The 
white dots in image 1 indicate the characteristic points, the white dots in 
image 2 and 3 indicate the corresponding points found by correlation. 
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4 Results 

No forward looking images were available during the test period. So, to be able to carry out 
some tests, three central array images of the downward looking mode are used; spectral bands: 
0.445 II m (image 1), 0.630 II m (image 2) and 1.020 II m (image 3). Image i, i = 1, 2, 3, are shown 
in fig. 3. The imaged area is a lake and its environment ('Loosdrechtse Plassen'). Just image 1 
contains moderate contrast; the other images show little local structure. 

Since the three images are simultaneously recorded, they should show the same geometry. 
Deviations are due to erroneous location of the corresponding points. To attain an insight into 
the deviations, as GTM, a shift (t x' tv) is introduced. Characteristic points are traced in all 
three images to obtain an indication of the influence of local structure. For each image the 
corresponding points in the other two images are searched by cross correlation. 

The thresholds M.t on the response of the Moravec operator are chosen such that the number 
of characteristic pOints are approximately the same in all three images <.:t 40). The thresholds 
are experimentally determined; for image 1 M = 2500, for image 2 and 3 Mt = 100. These num­
bers indicate already the large difference in focal structure. The target area, i.e. the window 
around the characteristic point, is set to 5 x 5 pixels and the search space in the other image is 
set to 13 x 13 pixels. The cross correlation coefficients have to exceed the threshold Rt = 0.8 
for all images. At present no constraints are imposed on the steepness of the correlation func­
tion. The results of the experiments are shown in table 2. 

Image 1 

R t 

Nc 

tx 

ty 

Mt = 2500 Np = 40 Image 2 Mt = 100 Np = 49 Image 3 

Image 2 Image 3 Image 1 Image 3 

0.8 0.8 Rt 0.8 0.8 R t 

6 13 Nc 19 16 Nc 

3.16 - 0.34 tx - 1.18 - 1.23 tx 

0.53 2.01 ty - 0.70 - 2.49 ty 

with: Mt ! threshold on the response of the Moravec operator 

Np: number of characteristic points found by the Moravec operator 

R t : minimum value of cross correlation coefficient 

Nc: number of corresponding points found in second image 

tx: shift in x-direction 

ty: shi ft in y-di rec tion 
Table 2 

Mt = 100 Np = 34 

Image 1 Image 2 

0.8 0.8 

25 18 

- 0.18 - 5.06 

- 0.13 2.35 

The sizes of the shifts (t , ty) indicate that in the present images the correspondence as­
signment isn't unproblematic. x.r 0 attain a better insight, the standard deviations 0 ii ; i = 1, 2, 3; 
j = 1, 2, 3; i # j, of the correspondence assignments are computed; i refers to the image in which 
the characteristic points are traced and j to the other image. The results are listed in table 3. 

0 .. 
1 2 3 1 J 

1 - 7.15 7.67 Table 3 
2 4.55 - 5.83 

3 3.40 7.68 -

When the characteristic points are detected in image 1, which has the highest local struc­
ture, 0 is high. Image 3 contains the least contrast and 0 31 = 3.40, which is the lowest value. 
So, a first conclusion may be that the characteristic points should be traced in the image with 
the lowest contrast. But, the correlation threshold (0.8) and even more the negligence of the 
steepness check of the correlation function, may affect this conclusion. 



5 Discussion 

The procedure is developed for plane regions and land applications only. Cross correlation 
does only yield a correct match in the case of shift between signals. For regions the relief can't 
be neglected, more advanced matching techniques must be developed, such as least squares 
signal matching and feature matching. 

In section 3 some drawbacks of the Moravec operator are listed. The Dreschler and Forstner 
operator doesn't show these disadvantages. Although computationally more costly, their suitabi­
lity for automatic tie point tracing have to be investigated. 

For application at sea, wave movements cause that the object rigidi ty assumption isn't valid. 
Moreover there is little texture and there are many repetitive structures which will cause many 
matching problems. In computer vision, methods are under current development to follow non­
rigid objects in time varying image sequences. From a fixed viewpoint a 3-D object space is 
observed. The objects are moving around. With the CAESAR scanner, a 2-D non-rigid object 
space is observed from varying sensqr positions. Because of the low grey value differences in 
the images, the first ideas are to employ methods which are sui ted to handle low textured 
images. Such methods are based on simulated annealing (Barnard, 1986, 1987). Simulated annea­
ling is founded on the physical phenomenon of annealing a system of molecules to its ground 
state by reducing temperature. Two conditions have to be fulfilled: 

- some function of the greyvalues in image G1 and G2 has to be optimized, e.g.: 

= min (5.1) 

with ki and Ij the disparity (=shift) between pixel (i,j) in G1 and the corresponding pixel in G 2" 

- the, di~parities vary smooth, i.e. some smoothing measure of the disparities S(ki,lj) has to be 
optHnlzed, e.g.: 

L
1
, ~ ( S( k. , 1.) ) 2 

J I J 
= min (5.2) 

with S(kpl j ), for instance, the sum of the absolute differences between the disparities of a pixel 
and the eight neigbouring pixels. Both conditions can be incorporated into one decision function 
E, which has to be minimized: 

E = E 
i 

1; ( G
1 

( i , j) - r ...... (i + k" j + 1,) ) 2 
J -L 1 J 

2 + a. (S( k . , 1 . ) ) 
1 J 

(5.3) 

with a. a weighting factor. To save computation time E can be modified by replacing the qua­
drates by absolute values. Following the procedure of simulated annealing, a random state is 
chosen, i.e. to each pixel in G1 a pixel in G2 is arbi trarily assigned. E is computed. A new ran­
dom state is chosen. States with lower E are accepted as better solutions. After many iterations 
the minimum state is reached, defining k i and I,. 

To reduce search space, the epipolar geomJtry is applied and the maximum amount of possi­
ble disparity is limited. The method reveals a dense map of corresponding points, but is compu­
tationally costly. It can be refined, saving computation time, by a coarse to fine approach in an 
hierarchical way. Matches at a coarse resolution, guide matching at fine resolutions. Whether 
simulated annealing or one of its modifications is fruitful for matching CAESAR sea images, has 
to be subject of thoroughly investigation. 

In summary the further research items are: 
- suitability test of other interest operators; 

extension of the single grey value Moravec operator to the multispectral case; 
determination of the most appropriate threshold for cross correlation; 
determination of the lower bound on steepness of the correlation function; 
the suitability of other, more simple correlation measures, like the sum of the absolute 
values of the differences, to reduce computation time; 
implementation of a testing procedure based on the B-methode of testing, to detect mis­
matches and to check to assumed geometric transformation model; 
determination of a suitable geometric transformation model for CAESAR images; 
determination of the matching precision and its adequate measure; 
optimal distribution of tie points; 
ext~nsion of the procedure for sea applications. 
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6 Conclusions 

A matching procedure to trace automatically corresponding points in CAESAR images is 
presented. Characteristic points are traced by the Moravec operator in one image. With cross 
correlation the corresponding points in the other image are traced. The search space is size 
limited by an approximate known exterior orientation and assumption of flatness of terrain. 
Mismatches are detected by the B-method of testing. The procedure is confined to the land 
mode of CAESAR and assumes that the area is approximately a plane. 

The presented procedure is under current development. A part of it is already implemented 
on the NLR Ht::SEDA system. The procedure has to be further extended and improved. The me­
thod is probably also suited for the determination of tie points in overlaying image parts of 
satellite images of areas with rare ground control points for mozaicing. For applications, for 
which the procedure isn't suited, because, e.g. the assumptions don't hold, other, more sophisti­
cated procedures have to be exercised, such as least squares signal matching and feature mat­
ching. 
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