Linear feature extraction with LSB-Snakes from multiple images
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ABSTRACT

In general, the snakes or active contour models feature extraction algorithm integrates both photometric and geometric constraints, |
with an initial estimate of the location of the feature of interest, by an integral measure referred to as the total energy of snakes. The
local minimum of this energy defines the feature of interest. To improve the stability and convergence of the solution of snakes, we
propose a new implementation based on parametric B-spline approximation. Furthermore, the energies and solutions are formulated in
a least squares approach and extended to integrate multiple images in a fully 3-D mode. This novel concept of LSB-Snakes (Least
Squares B-spline Snakes) improves considerably active contour models by using three new elements: (i) the exploitation of any a
priori known geometric (e. g. splines for a smooth curve) and photometric information to constrain the solution, (ii) the simultaneous
use of any number of images through the integration of camera models and (iii) the solid background of least squares estimation. The
mathematical model of LSB-Snakes is formulated in terms of a combined least squares adjustment. The observation equations consist
of the equations formulating the matching of a generic object model with image data, and those that express the geometric constraints
and the location of operator-given seed points. By connecting image and object space through the camera models, any number of
images can be simultaneously accommodated. Compared to the classical two-image approach this multi-image mode allows to control
blunders, like occlusions, which may appear in some of the images. very well. The issues related to the mathematical modelling of the
proposed method are discussed and experimental results are shown in this paper.

1. Introduction of interest. It has two advantages: Geometric constraints are
directly used to guide the search for the feature, and global
This paper deals with semi-automatic linear feature extraction information is used through integration of the energy along the
from digital images for GIS data capture, where the identification whole length of the carve (Fua, Leclerc, 1990). The
task is performed manually on a single image, while a special mathematical basis of the existing optimization approaches,
automatic digital module performs the high precision line however, is not well formulated and we diagnose a lack of
extraction. A human operator is used to identify the object from investigations on issues with regard to optimality, existence and
an on-screen display of a digital image, selects the particular uniqueness of the solution (Amini, et al., 1990), and the balance
class this object belongs to and provides some very few seed between different part of the energy (Samadani, 1991). Also, the
points coarsely distributed. This is done through activation of a internal quality assessment of the results is not possible.
mouse in a convenient interactive graphics-image user interface.
Subsequently, with these seed points as approximation of the In this paper, active contour models are formulated in a least
position and shape, the linear feature will be extracted squares approach and extended to integrate multiple images for
automatically. There are several techniques available to solve this feature extraction in a fully 3-D mode. With such a development,
problem. These techniques can be either used in a monoplotting the various tools of least squares estimation with their familiar
mode (combining one image with the underlying DTM) orin a and well established mathematical formulations can be
multi-image mode. This semi-automatic feature extraction favourably utilized for the statistical analysis of the obtained
scheme is shown in Figure 1. The monoplotting mode based on results and the realistic evaluation of its performance, e. g.
wavelet transform and dynamic programming has been well through the use of the covariance matrix of the estimated
demonstrated and documented in our previous publications parameters. This is in clear contrast to conventional snakes,
(Gruen, Li, 1995). We will focus here on the multi-image mode which due to their particular theoretical background and
based on LSB-Snakes, which provides for a robust and formulation, do not provide any measures for the qualitative
mathematically sound fully 3-D approach. control of their results. At the same time, it can be considered as
a new application and extension of the least squares template
In general, the snakes or active contour models feature extraction matching (LSM) technique (Gruen, 1985). Also, through the
algorithm integrates both photometric and geometric constraints, integration of camera models and a multiple-image approach
with an initial estimate of the location of the feature, by an redundant image information becomes available, which
integral measure referred to as the total energy of snakes (Kass, et stabilizes the solution and allows to deal with partial occlusions
al., 1988). The local minimum of this energy defines the feature and similar distortions.
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Fig. 1. A semi-automatic feature extraction scheme.

2. LSB-Snakes

LSB-Snakes derive their name from the fact that they are a
combination of least squares template matching (Gruen, 1985)
and B-spline snakes (Trinder, Li, 1995). In least squares notation
we use three types of observations. These can be divided in two
classes, photometric observations that formulate the grey level
matching of images and the object model and geometric
observations that express the geometric constraints and the a
priori knowledge of the location and shape of the feature to be
extracted.

2.1 Photometric observation equations

Assume a template and image region are given as discrete two
dimensional functions PM(x, y) and g(x, y), which might have
been derived from the a priori knowledge of the feature of
interest and a discretization of continuous functions (analogue
photographs). They can be considered as the conjugate regions of
a stereopair in the ‘left’ and the ‘right’ photograph respectively.
An ideal sitaation gives

PM(x,y) = g(x,y). 2-b
Taking into consideration the noise and assuming that the
template is noise free or its noise is independent of the image
noise, equation (2-1) becomes,

PM(x,y)~e(x,y) = g(x, y), (2-2)

where e(x, y) is a true error function.
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In terms of least squares estimation, equation (2-2) can be
considered as a nonlinear observation equation which models the
observation vector of PM(x, y) with a discrete function g(x, y).
Applying Taylor’s series to equation (2-2), dropping second and
higher order terms, with notations

d
Gy = 58(%y)
3 (2-3)
G, = ‘—g(xv y) s
YT 3y
the linearized form of the observation equation becomes
—e(x,y) = G (x% yNAx + G (29 yO)Ay +
(x.y) (Y (X%, y7)Ay (2-4)

+(g(x% Y0 - PM(x, ) .

The relationship between the template and the image patch needs
to be determined in order to extract the feature, i. e. the
corrections Ax, Ay in equation (2-4) have to be estimated. In the
conventional least squares template matching applied to feature
extraction, an image patch is related to a template through a
geometrical transformation, formuiated normally by a six
parameter affine transformation to model the geometric
deformation (Gruen, 1985). The template is typically square or
rectangular and sizes range from 5x5 to 25x 25 pixels.
Originally the LSM technique is only a local operator used for
high precision point measurement. It was extended to an edge
tracking technique to automatically extract edge segments
(Gruen, Stallmann, 1991), and a further extension was made
through the introduction of object-type-dependent neighbour-

initial
position final

solution

Fig. 2. Visualization of (a) least squares template matching of
an edge and (b) LSB-Snakes of a road segment, with the
initial position (black) and final solution (white).
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hood constraints between individual patches to enforce the local
continuity in a global solution (Gruen, Agouris, 1994). In another
approach least squares template matching was combined with
Kalman filtering of the parameters of the road for road tracking
(Vosselman, Knecht, 1995).

Instead of a square or rectangular template, we extend the least
squares template matching technique into LSB-Snakes by using a
deformable contour as the template. This is shown in Figure 2.
The ribbon with black outline is our initial template and the white
one is the final solution. Its centre line is the extracted feature, in
the example of the figure the centre line of a road segment.

Suppose a linear feature, the centre line of the template is
approximated by a spline curve and represented in parametric
form as

n
= Y N()X;

i=1

= Y N'9Y,,

i=1

x(s)
(2-5)

y(s)

where X; and Y, are the coefficients of the B-spline curve in x

and y direction respectively. In terms of the B-spline concept,
they form the coordinates of the control polygon of the curve.

Ng"(s) is the normalized mth B-spline between knots u; and

Ui, m+ (Bartels, et al., 1987). While the knot sequence is

given, feature extraction can be treated as a problem of
estimation of the coefficients X; and Y; of the spline curve.

The first order differentials of the B-spline curve can be obtained -

as

Ax

n
3 N ()AX,
i=1

(2-6)
Ay

S N(9AY;

i=1

Substituting the terms in equation (2-4), we obtain the linearized
photometric observation equations with respect to the
coefficients of the B-splines. The linearization of the observation
equations for all involved pixels can be expressed in matrix form
as

P

m

~e,, = G,NAX + G NAY -1, ; Q-7

with

N = [N(')”(s) NT(s) ... Nf(s)] (2-8)

Since a linear feature is essentially unidirectional, the template
would slide along it during matching. To ease this problem and
simplify the implementation, the above equations are changed to
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P

mx

P

my *

“€x

G NAX -1, :
GxNAY—lmy ;

l

(2-9)

1

—€

A pair of independent observation equations are thus formed for
the x and y directions. The observation vectors /, . and lmy

contain the differences of conjugate pixels, P, and Pmy are the

corresponding weight matrices, which are introduced as diagonal
matrices.

2.2 Geometric observation equations

In a semi-automatic feature extraction scheme, a set of seed
points near the feature of interest is given by a human operator or
other preprocessing procedures. In terms of least squares
adjustment, these seed points can be interpreted as the control
points which determine the location of the feature to be extracted.
Because they are only coarsely given, a correction has to be
estimated. Therefore they should be considered as observations.
Thus the second type of observation equations can be established
as

PCX ?

P,

cy

= X—Xn
0 (2-10)
=¥Y-Yg >

where x, and y, are the observation vectors of coordinates of

the seed points in x and y direction respectively, P, and Pcy

are the corresponding weight matrices, introduced as diagonal
matrices. The linearization of the coordinates with respect to the
coefficients of the B-splines can be expressed in matrix form as

€.y = NAX—tcx > ch ’ 2-11)
—e., = NAY—tCy ; Pc_v ,
in which £, and t,, are given by
- 0 — 0
=XV —xy = NXY-x, ,
cx , 0 . (2-12)
tcy=y —yO:NY _y()

With the seed points an initial curve is formed as a first shape
approximation of the feature. In order to stabilize the local
deformation of the template we introduce the following
smoothness constraints. Assume the initial curve is expressed by

x0(s) and y9(s). We establish the third type of observation
equations based on the first and second derivatives of the curve as

—e, = x,(s)-x0(s) ; o 1)
—ey, = 7()=¥2(s) 3 Py, .
“€esx T x.vs(s)_xgv(s) ; Pssx ’ (2-14)
~Cssy T ysx(s)‘ygs(s) ; Pssy :

Linearizing them with respect to the coefficients of the B-spline
they can be expressed in matrix form as
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Tex T NsAX"‘tsx ; Psx ’ (2-15)
—€,, = NSAY—tSy ; Psy s
€y T NSSAX_tSSX ; Pssx ’ (2-16)
_esxy = N”AY—t”y ; Pssy :

Where N and N are the first and second derivatives of N

defined in equation (2-8), and the terms ¢ are given by

=N X0O-x0 |
R . ; (2-17)

sy = NSY =¥
tssx = NSSXo_xSO.Y ’ (2-18)

— 0 0
tssy - NSxY “Vss -

Any other a priori geometric information of the feature can be
formulated in this manner. A joint system is formed by all of
these observation equations (2-9), (2-11), (2-15) and (2-16).

2.3 Solution of LSB-Snakes

In our least squares approach linear feature extraction is treated
as the problem of estimation of the unknown coefficients X and
Y of the B-spline curve. This is achieved by minimizing a goal
function which measures the differences between the template
and the image patch and which includes the geometrical
constraints. The goal function to be minimized in this approach is
the L, —norm of the residuals of least squares estimation. It is

equivalent to the total energy of snakes and can be written as

T T T T
v Pv Pov)tv, P v +v Py, =

(vTP V. +v
s s s S5 8§58 m-m m

(2-19)

E,+EX+EC=>Minimum .

In terms of snakes, E, denotes the internal (geometric) energy of

the snakes derived from smoothness constraints, E x denotes the

external (photometric) energy derived from the object model and
the image data, and E represents the control energy which

constrains the distance between the solution and its initial
location.

To minimize this goal function (total energy of snakes), we have
the following necessary conditions

(2-20)

A further development of these formulae will result in a pair of
normal equations used for estimation of AX and AY
respectively. Because of the local support property of B-splines,
it can be shown that the normal equations are banded (bandwidth
b = m+ 1) and the solution can be efficiently computed. The
various tools of least squares estimation with their familiar and
well established mathematical formulations can be favourably
utilized for the statistical analysis of the obtained results and the

realistic evaluation of the algorithmic performance. So one can
evaluate the covariance matrix of the estimated parameters and
derived quantities therefrom. Also, one obtains an estimate of the
system noise. In addition to the traditional least squares
estimation, a robust estimation can be efficiently computed too, if
required.

3. LSB-Snakes with multiple images

If a feature is extracted from more than one image, its coordinates
in 3-D object space can be derived. The 3-D coordinates of the
feature point in object space can be directly obtained by the
MPGC matching technique (Gruen, 1985, Gruen, Baltsavias,
1985) or an object-space correlation algorithm (Wrobel, 1987,
Helava, 1988).

Suppose a linear feature in 3-D object space can be approximated
by a spline curve and represented in B-spline parametric form as

X (s) = NX,
Y (s) = NY, (3-1)
Z.(s) = NZ,

where N is defined in (2-8), X, Y and Z are the coefficient
vectors of the B-spline curve in 3-D object space and X, Y

and Z, are the object space coordinates of the feature. If

multiple images are available, there are two main ways to
perform the multiphoto matching. The first method is to connect
the photometric observation equations of every image by means
of external geometrical constraints. One class of the most
important constraints is generated by the imaging rays inter-
section conditions (Gruen, 1985). The second method is object-
space correlation, which is performed in object space by
matching densities assigned to “groundels” (ground elements).
Both methods can be applied for LSB-Snakes. Since LSB-
Snakes deal with a curve instead of an individual point, direct use
of the MPGC algorithm will introduce much more unknowns
than necessary. The method of object-space correlation is
definitely of theoretical interest, however, it cannot be easily
applied to LSB-Snakes without extension of the algorithm, since
we are facing here a truly 3-D problem. Gur 3-D LSB-Snakes can
be interpreted as the object-space analogy of MPGC for multiple
points defined on a deformable spline curve.

Assume patches are used from k> 1 tmages. If the image
forming process followed the law of perspective projection, a
pair of collinearity conditions in parametric form can be
formulated for each of the image patches as

_ Cail(XT‘Xo)+azl(YT‘Y0)+a31(ZT”ZO)
! a3 (Xp=Xg)+an(Yr-Yo) +ay(Zr-2g) °
ap(Xp—=Xo) +ay(Ye—Yo) +asy(Zy—Zy)
a3(Xp—Xo)+ayu(Yr-Yo) +ass(Zr-2y)

(3-2)

y; = —¢

If the interior and exterior orientation parameters of each image
are given or can be derived, the unknowns in equation (3-2) to be
estimated are the coefficient vectors of a B-spline curve. The first
order differentials can be obtained as
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ax = 25 nax s 2 nar + Pnaz
LT 90X, v, 9Z, :
(3-3)
dy; dy; dy;
Ay, = a—X’—TNAX + 57’;NAY + a—Z’TNAZ

Substituting equation (3-3) in (2-4) the linearization of the
observation equations with respect to the coefficient vectors of a
3-D B-spline curve can be obtained. For the same reasons as for
2-D LSB-Snakes the equations are changed such that they can be
expressed in matrix form as

!
Y
il

FyNAX -1, P __,
FYNAY—lm_y ; Pmy s 4-1)

e, = F,NAZ-I, ;

!
Q
11

=
>
|

ad 95 9 9y;
= B_xg(x’ )’)53(‘; + ag(x, }’)'a—X;

(4-2)

0 ox; ) 9y,
Fy = 8_xg(x’ }’)QY—T‘*;};g(}C,)’)‘a‘?—T

~
N
|

D gt s D g )k
= a8 g g ez,

The geometric observation equations (2-11), (2-15), (2-16) can
be extended into three dimensions by introducing a new
component for the Z-direction. Then the 3-D LSB-Snakes can
again be solved by a combined least squares adjustment. That is,
a 3-D linear feature is extracted directly from multiple images.
The statistical analysis of the obtained results and the realistic
evaluation of the algorithmic performance can be done through
the use of the covariance matrix of the estimated parameters.

(©)

(d)

Fig. 3. Simultaneous 3-D extraction of a road segment from four images. Upper left: Location of seed points (O-iterations) and
extracted road centre line. Rest: Extracted road centre line (after ca. 5 iterations).
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4. Experiments with road extraction

The LSB-Snakes method described in this paper has been
successfully implemented on computer workstations. We have
tested the algorithm on a nurmber of real images. In this section,
some experimental results of road extraction will be given.

An imaged object is defined and identified by its characteristics,
which can be classified into five groups: Photometric, geometric,
topological, functional and contextual characteristics. In our
semi-automatic feature extraction scheme the high level
knowledge, which requires quite some intelligence for the image
interpretation process, is used by the human operator to identify
and classify the object. The generic object model involved in the
model driven feature extraction algorithms consists of some
photometric and geometric characteristics. Examples of a generic
road model are (Gruen, Li, 1995):

* aroad surface often has a good contrast to its adjacent areas,

¢ a road surface usually is homogeneous (at least in a certain
portion of the image),

* aroad is a continuous and narrow region or linear feature,

¢ aroad is smooth and does in general not have small wiggles,

e the local curvature of a road has an upper bound,

* the width of a road or road segment does not change
significantly.

Some of these properties are mathematically formulated and used
to generate the template and define the weight functions. For
instance, the grey values of the template can be derived from the
images through computations of the local contrast according to
the first property, while the second property suggests that the
weights of the photometric observations should be related to the
local changes of the grey levels along the road.

In the current implementation, only one image is displayed in the

“user interface. After some very few seed points have been given

by the operator in the displayed image, the camera model or
projection equation is applied to project them into object space.
This is done in an iteration procedure for the computation of the
X, Y-coordinates and interpolation of the Z-component with a
very coarse DTM. Then the 3-D feature is extracted
automatically and precisely by the LSB-Snakes algorithm.

Figure 3 shows one example of simultaneous 3-D extraction of a
road segment from four images, which are portions of aerial
images of Heinzenberg, Switzerland. The four images are from
two strips with about 60% end and side lap. The scale of the
original photograph is about 1:15,000. The images were taken in
a mountainous area and the height differences in the test region
are about 1,000 meters. The negative films were scanned at a
Leica/Helava scanner with 10 microns and were later subsampled
to.40 microns pixel size. Thus the footprint of the images is about

(b)

(©)

()

(4

(d)

Fig. 4. Simultaneous 3-D extraction of a road segment from four images (a), (b), (c) and (d). The white rectangle denotes the
problematic area of occlusion and the extracted road segments are displayed as a black curve. (¢') and (d') show the results

without blunder detection.
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0.6 meters. Most roads in the test region belong to the 3rd or 4th
class and are about 5 pixels wide on the images. The exterior
orientation parameters are taken from the results of a block
adjustment. The VirtuoZo software was used to perform the
interior orientation of the digitized images and to generate a very
coarse DTM (interval 30 m, ca. 50 pixels). The seed points
(initial polygon), provided manually by the operator, are
displayed in black overlaid on the first image. The extracted road
centre line is shown as a black curve. Visual tests prove the
successful performance of the algorithm.

Figure 4 focuses on another portion from the same aerial images.
At this time, the problematic areas marked with white rectangles
show occlusions in two out of four images caused by trees. In
terms of least squares adjustment, the photometric observations
in the problematic areas are blunders. They have to be detected
and rejected. This is achieved in our implementation by using
adaptive weight functions, in which the weights of observations
are related with the ratio of their residuals and the variance factor.
To get a large pull-in range the algorithm starts with a flat weight
function. To reduce the influence of blunders it becomes steep
after three iterations. In such a way, the weights of observations
with big residuals will become smaller and smaller. The results
shown in Figure 4 prove that the blunders are successfully
rejected and the algorithm bridges gaps in a robust manner. For
comparison the results without blunder detection are shown in
Figure 4 as (¢') and (d"). Since the extracted road on images (a)
and (b) is the same in both cases they are not displayed again. It
is also verified by this example that more than two images are
required for 3-D linear feature extraction. Using only two images
cannot give reliable 3-D results.

5. Conclusions

In this paper we have presented a new approach for (linear)
feature extraction (LSB-Snakes). The method of active contour
models (Snakes) is formulated in a least squares approach and, at
the same time, the technique of least squares template matching
is extended by using a deformable contour instead of a rectangle
as the template. Through the integration of camera models any
number of images can be simultaneously used and the feature can
be extracted in a fully 3-D mode. Thus blunders in image data,
like occlusions, can be controlled very well. Instead of a set of
points on the feature, a B-spline representation of the linear
feature is estimated. The results obtained so far are very
encouraging. Further studies will make use of more extensive
data sets and will focus on the quality assessment and automated
performance evaluation.
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