AIRBORNE GPS

K. Jeyapalan
Professor of Civil Engineering
Iowa State University
Ames, Iowa 50011
United States of America

KEY WORDS: GPS, Photogrammetry, Calibration

ABSTRACT:
The paper gives the theory of airborne GPS related to Photogrammetry and the results of a self calibration used to validate the theory. Accordingly, no ground control points are required for mapping using a strip or block of photographs provided the site is within 10 Km of the calibration site.

INTRODUCTION
Global Positioning System (GPS) technology has been developed in recent years such that the position of moving objects can be determined to about ±0.2 mm relative accuracy and about ±2 cm absolute accuracy. The airborne GPS research was conducted at Iowa State University from April 1993 to May 1995. A series of four tests were carried out in St. Louis, Missouri and in Ames, Iowa. All tests, except one, were done in cooperation with Ashtech and Surdex Inc., using Cessna aircraft, LMK 2000 camera and Ashtech receivers. The objective of this research was to use airborne GPS to take aerial photographs at predetermined locations, to determine the best aerial camera location and orientation for mapping.

The research showed that Airborne GPS is feasible. In block triangulation no ground controls are required. In a strip, no ground controls are required provided either the omega angle (rotation about the y axis) of the camera is known or the height difference between 2 or more points in the y direction are known. The research showed that the omega angle of the camera can be determined to an accuracy of 0.0001 radians by a self calibration from the omega angle of the aircraft determined by airborne GPS, provided the calibration site is within 10km of the photographic site.

The objectives of this paper are to describe briefly photogrammetry and kinematic GPS as they relate to airborne GPS, give the summary of the self calibration used to test airborne GPS, and the conclusions and recommendation.

PHOTOGRAHMTRY
In photogrammetry the photo coordinates (x, y) are related to the ground coordinates (x’, y’) by the following equation:

\[x = x' - a_{11}(x_0 - x_0) + a_{12}(y_0 - y_0) + a_{13}(z_0 - z_0) + a_{31}(x_0 - x_0) + a_{32}(y_0 - y_0) + a_{33}(z_0 - z_0) \]

\[y = y_0 - f(a_{21}(x_0 - x_0) + a_{22}(y_0 - y_0) + a_{23}(z_0 - z_0)) + a_{31}(x_0 - x_0) + a_{32}(y_0 - y_0) + a_{33}(z_0 - z_0) \]

where \(x_0, y_0, f \) are interior orientation elements, \((x_0, y_0, z_0) \) are the nodal point coordinates in the ground coordinates system.

and \(A = \mathbf{R}_c \mathbf{R}_b \mathbf{R}_w = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \)

Where \(\mathbf{R}_c \mathbf{R}_b \mathbf{R}_w \) are the rotation matrix required to make the photo coordinates axes \((x, y, z) \) parallel to the ground coordinate axes by rotating first about x axis by \(\omega \), then about y axis by \(\phi \) and finally about z axis by \(\psi \). The \(\mathbf{K}, \phi, \omega \) are known as the orientation angles.

The objective of photogrammetry is to determine \((x_0, y_0, z_0) \) of a point from the photo coordinates of two or more photographs. This is done by three methods: Analog, analytical and self calibration.

In the analog method, the interior orientation, radial and centering distortions are assumed small. The projectors are used to project the images and produce the stereo models. When producing the stereo model, five of the twelve exterior orientation elements are determined by relative orientation. The stereo model is scaled and leveled using external ground control points, thus determining the other seven exterior orientation elements. Special instruments such as Zeiss ZE are designed to produce the stereo model and then plot the map.

In the analytical method, the photo coordinates are corrected for interior orientation, radial and centering distortions given by the calibration of the camera. The photo coordinates of two or more photos, together with three or more known ground control are simultaneously adjusted to give the ground coordinates. Software such as "Albany" is capable of such adjustment. Some stereo plotters which are connected to computers for doing these computations in real time and which assist in driving the plotters are known as analytical plotters.

In self calibration, the interior orientation elements, the radial and centering lens distortion elements, and the exterior orientation elements are simultaneously determined with unknown ground control points using the photo coordinates of two or more photos and a number of ground control points. The method used is normally the least squares constraint method in which any of the parameters are constrained to its known accuracy. The program such as "Calib" is capable of this adjustment.

377
KINEMATIC GPS

The GPS consists of 24 satellites orbiting about 20,000 kilometers above the earth. The satellites transmit information in two carrier frequencies L₁ and L₂ and modulated by two codes P and C/A code.

Differential GPS tracks the same satellites from two stations. Using the carrier phase frequency, the base line vector can be computed accurately. The accuracy depends on the accuracy of the phase measurement, error due to multipath and the ionospheric error depending on the distance between the two stations. The use of P and C/A code may eliminate the multipath and use of L₁ and L₂ may eliminate the ionospheric error. The receivers, such as the Z12 Ashtech receiver, measures the phase to an accuracy of 0.2 millimeters or better and has the capability of tracking L₁ and L₂ frequencies.

In Kinematic GPS one of the receivers is fixed at the base station and the other is free to move. The phase angle from each satellite is measured continuously. However, only portions of the phase angle less than 2π are measured at one time; hence the receiver has to keep track of the total phase angle, and the integer number of 2π. When a receiver moves, there is a possibility that it may lose track of a satellite and loose the integer number of 2π. Knowing the position of the base receiver and the position of the rover, using the other satellites, it is possible to calculate the lost integer count. The PNAV software is capable of resolving the integer ambiguity on the fly, provided there are more than 7 satellites at a time.

APPLICATION OF KINEMATIC GPS IN PHOTOGRAMMETRY

If a GPS antenna is fixed above the camera nodal point in an aircraft (camera antenna), then its position, (see Fig. 1) determined in real time by kinematic mode, can be used to take aerial photos at predetermined locations. Thus Kinematic GPS is used in pin-point navigation for photogrammetric mapping.

Using differential Kinematic GPS, the camera’s location (xₚ, yₚ, zₚ) can be determined precisely. Thus, in a stereo pair, of the 12 exterior orientation elements, six can be determined by Kinematic GPS methods. Five of the exterior elements can be determined by relative orientation and 12th element, ω, has to be determined by external ground control.

In a triplet with two photos in the y direction and two photos in the x direction (see Fig. 2), the kinematic GPS can be used to determine 9 exterior orientation elements and the relative orientation to determine the other nine exterior orientation elements.

In an aircraft, if 4 antennas are mounted as shown in Fig. 1 such that the left wing antenna and the right wing antenna is along the y axis of the aircraft; the camera antenna C and the forward antenna F is along the x axis, then the Kinematic GPS can be used to determine the locations of these antennas at the time of the exposure. From the location of the antennas, the rotation angles of the aircraft with respect to the ground system (x₀,y₀,z₀) can be obtained from:

\[
\sin \psi = \frac{(Z - Z_0) / LR}{
\sin \phi = \frac{(Z - Z_0) / FC}{
\sin \kappa = \frac{(Y - Y_0) / FC}{
\sin \omega}
\]

If R is the rotation matrix which makes the camera axis (xₚ,yₚ,zₚ) parallel to the aircraft axis (xₜ,yₜ,zₜ), then the rotation angles of the camera is given by:

\[
A = R A' R^T
\]

where

\[
A' = \text{rotation of the aircraft obtained by GPS}
A = \text{rotation of the camera}
R() = \text{rotation matrix about z, y or x axis}
\]

Thus in an aerial photo all the exterior orientation can be determined by kinematic GPS provided the parameters of the matrix R are determined by calibration. This means that no ground control is required for rectification, stereo plotting, and orthophoto production.

RESULTS OF SELF CALIBRATION

On June 20, 1994, the Cessna aircraft fitted with four L₁/L₂ antennas and a L₁ antenna for navigation, was used to test the airborne GPS concepts (see Fig. 3).

The aircraft was taxied over the Taxi point; the four GPS Z12 receivers were connected to the L₁/L₂ antennas and arranged to collect the data on flight. Two Z12 GPS receivers were set on the nearby reference points Base 1 and Base 2.

The flight plan consists of one flight in the East - West direction at a flying height of 3000 feet over the ISU campus, and another over the ISU campus and continuing over the Highway 30 test site at a flying height of 1500 feet (see Fig. 4). The campus site is 3 to 5 kilometers from the airport and the Highway 30 site is about 17 to 30 kilometers from the airport.

The results were smooth and the positions of the antennas with respect to all three references agreed within acceptable limits. Fig. 3 shows the location of the left wing, right wing and camera antennas with respect to the Taxi point. The difference between the camera antenna coordinates determined by PNAV when the aircraft is over the Taxi point and the coordinates from control survey is 0.06 meters in x and 0.13 meters in y indicating that the PNAV position determination is accurate and the small difference shows the ability of the pilot to taxi the plane exactly over the Taxi point. The height of the camera antenna above the camera’s nodal point given by PNAV and the tape measurement is 1.541 meters which compares with the previous calibrated value of 1.464 meters; the difference is due to the use of a cloth tape for measurement and the lack of knowledge of the exact location of the nodal point.

Using the time, antenna locations, and angles at all times of flight; the angles at camera exposure times are prepared by utilizing a spreadsheet.

For this study, it was sufficient to accept the data with Base 2 as a reference and the interpolated antenna positions given by the PNAV software. Photos 1-3 from flight 1; and photos 4,5,6, and 7 are from flight 2 campus site and photos 8 & 9 are from flight 2 Highway 30 site are used in the analysis.

Table 5 shows that the difference in orientation angles between the photogrammetry and GPS methods were consistent for the campus
site in flight 1 and flight 2 and not consistent between campus site and the Highway 30 site in flight 2. This is due to the highway 30 site is about 25 kilometers from Base 2, and lack of good targeted pass and control points.

As discussed earlier, in order to do strip adjustment using airborne GPS without any ground control we need to determine the omega orientation angle by airborne GPS. Previous tests have shown that:

$$\omega_1 = \omega_0 + (a \cos K_0 + b \sin K_0) \omega_2 + c \Phi_0$$ \hspace{1cm} (4)

where

$$\omega_0 = \text{omega by photogrammetry}$$

$$\omega_2 = \text{omega by GPS}$$

$$\omega_0 = \text{a constant parameter}$$

The variable Φ_0 was added as the camera's swing motion was locked.

Table 9 shows that the standard error of the fit between ω_0 and ω_2 is 0.00008 radians. The accuracy of 0.0001 radians in ω is sufficient for drawing 2 foot contours either from 1500 or 3000 feet flying height photos.

Table 10 shows the difference between $\Delta \omega_2 = \omega_2 - \omega_0$ of flight 1 and $\Delta \omega_2 = \omega_2 - \omega_0$ of the flight 2. The standard error of $\Delta \omega_2$ is 0.00003 radians which agrees with the expected error of 0.00002 for a height difference of 0.2 millimeters at 10 meters apart.

CONCLUSION AND RECOMMENDATION

The airborne GPS is feasible. The coordinates of the camera antenna can be determined with an accuracy better than ± 10 centimeters or better provided the base reference station is within 10 kilometers of the photographic site. This is acceptable for mapping at all scales.

The PNAV software resolves the integer ambiguity satisfactorily for fast static computation provided the rover receiver is within 10 kilometers of the base station.

Camera, wings and foresight are suitable for antenna location. However the tail is not. The motion of the left and wing antennas are symmetrical and can be used for computing the angle of rotation.

The accuracy of the Z12 GPS receiver is 0.2 millimeters and the noise due to multipath at the camera, foresight and wing locations is negligible. The accuracy of the ω obtained from left and right wing antennas at a separation of 10 meters is better than ± 0.0001 radians. This is acceptable for 2 foot contours using 3000 feet or lower flying heights.

For a block with more than one strip, no ground control is required. The base station has to be within 10 kilometers of the block and local geoid undulation must be applied to the elevations.

For a strip, self calibration is required for transferring ω_0 to ω_2. This calibration is valid for projects within 10 kilometers. In order to determine the true parameters which will give true ground values, the self calibration has to be designed to eliminate linear dependency between interior orientation elements and exterior orientation elements, as well as within the interior orientation elements. This can be accomplished by a self calibration using airborne GPS with a minimum quadruplet of photos (see Fig. 11); two in the direction of flight, one perpendicular to the flight and another at low altitude flying height. This self calibration can be done every 10 Km along the strip. Since no additional targeting is required and only observation in additional two photos for every 10 Km is required the method is economically feasible.

Further research is required to obtain ω_0 from ω_2 with accuracy of ± 0.00002 radians. GPS is capable of providing this accuracy.
ACKNOWLEDGMENT

The author wish to thank the Iowa Highway Research Board for supporting this research project.

Thanks also go to Rick Hoffman and others from Surdex Inc. for obtaining the aerial photographs. Mr. Bill Curtrell of Ashtech Inc. obtained airborne GPS data for the project. Dr. Vogel of the Department of Aeronautics and Astronautics and his students for assistance in analyzing the aircraft wing motions. We thank them all for their support.

Finally, the author wish to thank the staff of the Civil and Construction Engineering Department, staff of the Engineering Research Institute, and to Iowa State University for their assistance in getting this project completed on time.

References:
Figure 4. Project 1994.

<table>
<thead>
<tr>
<th>ω</th>
<th>φ</th>
<th>Κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0045</td>
<td>0.0151</td>
</tr>
<tr>
<td>2</td>
<td>0.0053</td>
<td>0.0130</td>
</tr>
<tr>
<td>3</td>
<td>0.0037</td>
<td>0.0117</td>
</tr>
</tbody>
</table>

Table 5. GPS-Photo orientation.

<table>
<thead>
<tr>
<th>INPUT DATA ARE: (OHEGA, OHEG, XKAPPA, PHIg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHEGA</td>
</tr>
<tr>
<td>0.0433208000</td>
</tr>
<tr>
<td>0.0422709000</td>
</tr>
<tr>
<td>0.0157740000</td>
</tr>
<tr>
<td>0.0364800000</td>
</tr>
<tr>
<td>0.0479880000</td>
</tr>
<tr>
<td>0.0133520000</td>
</tr>
<tr>
<td>0.0177230000</td>
</tr>
</tbody>
</table>

FORMULA IS OHEGA = OHEGA + OMEGA = OMEGA (a * COS(KAPPA) + b * SIN(KAPPA) + d * PHIg)

-0.004885666 -0.0641123173 0.4197135928 -0.0000743669

THESE ARE THE ERRORS, (COMPUTED - REAL)

-0.000040 0.000050 -0.000073 -0.000066 -0.000035

THE STANDARD DEVIATION IS 0.000013

Table 6. Results of combination of high and low flights.

Weight on photo coordinates = 5000
Standard error on ground contact = 0.01m

Standard error on Airborne GPS (low flight)

Xo, Yo, Zo = 0.01m

Standard error on Airborne GPS (high flight)

Xo, Yo, Zo = 0.01m

FORMULA IS OMEGA = OMEGA = OMEGA (a * COS(KAPPA) + b * SIN(KAPPA) + d * PHI)

-0.0107795884 0.8991249582 0.7631507940 0.0000904326

THESE ARE THE OMEGA:

-0.0128428 -0.0205923 -0.0156900 -0.0372186 -0.0150666 -0.0230069
-0.0091735 -0.0129985 0.0087594 -0.0112116 -0.0134105 -0.0264845
-0.0076987 -0.0044129 -0.0056235 -0.0113606 -0.0143648 -0.0108987
-0.0026834 -0.0073571 -0.0023437 -0.0119827 -0.0178356 -0.0114358
-0.0118249 -0.0080444 -0.0273579 -0.0313359 -0.0261377 -0.0109228

Table 7. ω_G to w_p using different weights.

381

Table 8. GPS-Photo locations using refined data.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.081</td>
<td>0.277</td>
</tr>
<tr>
<td>2</td>
<td>0.305</td>
<td>0.205</td>
</tr>
<tr>
<td>3</td>
<td>0.005</td>
<td>0.491</td>
</tr>
</tbody>
</table>

Mean: 0.076 Std. Error: 0.165

4	0.048	0.343	0.258
5	-0.004	0.1	0.081
6	-0.099	-0.204	0.046
7	0.059	-0.359	0.131

Mean: 0.001 Std. Error: 0.062

| 8 | -0.243 | 0.286 | -0.916 |
| 9 | 0.467 | 0.349 | -0.865 |

Mean: 0.112 Std. Error: 0.035

Table 9. \(\omega_p \) to \(\omega_g \) using refined data.

Input data are: [\(\Omega_{GAP}, \Omega_{GAP}, \kappa_{GAP}, \phi_{IG}, \) TIME]

<table>
<thead>
<tr>
<th>(\Omega_{GAP})</th>
<th>(\Omega_{GAP})</th>
<th>(\kappa_{GAP})</th>
<th>(\phi_{IG})</th>
<th>SECONDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.043392</td>
<td>0.047640</td>
<td>0.075825</td>
<td>-0.061304</td>
<td>0.670116</td>
</tr>
<tr>
<td>0.044186</td>
<td>0.047440</td>
<td>0.065577</td>
<td>-0.066096</td>
<td>0.775577</td>
</tr>
<tr>
<td>0.041478</td>
<td>0.045469</td>
<td>0.041470</td>
<td>-0.035374</td>
<td>0.3256438</td>
</tr>
<tr>
<td>0.036995</td>
<td>0.042291</td>
<td>0.045363</td>
<td>-0.030499</td>
<td>1.657599484</td>
</tr>
<tr>
<td>0.0348136</td>
<td>0.045704</td>
<td>0.023388</td>
<td>-0.023388</td>
<td>1.460871496</td>
</tr>
<tr>
<td>0.012202</td>
<td>0.016754</td>
<td>0.052765</td>
<td>-0.040787</td>
<td>1.446134522</td>
</tr>
<tr>
<td>0.007330</td>
<td>0.001924</td>
<td>0.067034</td>
<td>-0.033132</td>
<td>1.467263800</td>
</tr>
</tbody>
</table>

Formula: \(\Omega_{GAP} - \Omega_{GAP} = \Omega_{GAP} + \Omega_{GAP} + (a \times \cos(\kappa_{GAP}) - b \times \sin(\kappa_{GAP})) \times (\phi_{IG}) \times (\kappa_{GAP}) \)

These are the errors: (COMPUTED - REAL)

| 0.0000777 | -0.0000467 | 0.0000140 | -0.0000374 | 0.0000091 | 0.0000044 |

The standard error is

0.0000859

Flight Pattern

Figure 11. Flight Pattern