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ABSTRACT

In Photogrammetry and Geodesy various methods for DTM-modelling exist. A surface, where the height coordinates
z(z,y) are a function of the planimetric coordinates z and y, is usually described by an height matrix, but we can also
do a Fourier series expansion. Since many processes in environmental modelling and climate research are described on
the sphere, we have developed a method which uses spherical coordinates instead of planimetric coordinates. Starting
with a set of scattered data the height of a surface point is calculated by analyzing adjacency relationships using locally
supported basis functions. Organizing our algorithm in a hierarchical way with different scale functions errors in the
data set can be detected. The method is triggered by B-spline interpolation and wavelet techniques. It is tested on data

sets of Australia and the asteroid 243 IDA.

1 INTRODUCTION

Topographical information, especially digital terrain mod-
els (DTM), are used in various applications, i.e. in Me-
teorology, climate and environmental modelling and in
Geodesy. In these applications often regional and global
processes are simulated. One of the main requirements is
the fast access of topographic data in different aggregation
levels. The same aspects arise in computer graphics, vi-
sualization and visual simulation (Gross, 1995). For this
purpose efficient algorithms for coding and representation
of very large data sets, in particular DTM, are needed.

The variation of the surface elevation over a planar, spheri-
cal or ellipsoidal area can be modelled in many ways. DTM
can be represented either by mathematically defined sur-
faces or by point and line methods. For global DTM the
point methods often result in coarse regular grids, in which
one grid cell represents a large area. Since the height is
calculated as an average over this region, terrain features
such as peaks, pits, passes, ridge lines, and stream courses
cannot be represented using a coarse matrix. The advan-
tage of these grid DTM is the fast data access nevertheless
much storage capacity is needed in case of a global DTM.

The mathematical methods of surface modelling rely on
continuous 3-dimensional functions that are capable of
representing complex forms with a high degree of smooth-
ness. The surface can be split into patches of equal area
and the associated heights are calculated from point obser-
vations within the patches. Weighting factors are used to
ensure that the surface patches match at the edges, though
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the surface does not always need to be continuous in slope
at the borders. For global DTM modelling Fourier series
and interpolation with multiquadric polynomials are also
used. In the latter case we have to solve a linear system
which causes problems if the data amount is too high. The
above methods are described in (Burrough, 1986; Gold,
1989) in more detail.

Wavelets have proven their efficiency for use in numeri-
cal analysis and signal processing and there are also a few
publications (Li, Shao, 1994; Zhou, Dorrer, 1994) in Pho-
togrammetry. Their power lies in the fact that a small
number of coefficients can represent general functions and
large data sets quite accurately. The method proposed in
this paper is similar to Fourier series expansions but gov-
erned by ideas of B-spline functions and wavelet theory.

After a short description of the mathematical fundamen-
tals (Chapter 2) the new algorithm is given in Chapter 3.
In Chapter 4 we present results of the first tests with a
DTM of Australia. In a second example a data set derived
from images of the asteroid 243 IDA is processed. Chapter
5 concludes the paper with an outlook on future work.

2 MATHEMATICAL FUNDAMENTALS

Starting with the description of the well known “next
neighbour” approximation we introduce a new approach
for global DTM modelling on the sphere. In our descrip-
tion we denote as reference points the given primary data,
acquired from digitized maps, Photogrammetry (e.g. im-
age matching) or GPS measurements. In the next neigh-
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reference point

basis point

Figure 1: Voronoi diagram of irregular data superimposed
with regular grid of basis points

bour approximation the height on a regular grid, in our
words at a basis point, is linked to the height of the next
reference point. The region of influence of a reference point
can then be plotted in a Voronoi diagram (see Figure 1).
Covering our domain with a grid with fixed mesh-width
the surface is represented by a height matrix which can
be processed very efficiently. The height of a sampling
point (e.g. point on a finer grid for displaying the DTM)
can be calculated by bilinear interpolation or other meth-
ods from the heights of the basis points. This means that
the next neighbour approximation involves 3 data sets, the
reference points, the basis points and the sampling points.
Our approach is characterized by the same property. The
transmission of the height information from a reference
point to a basis point depends on the spatial distance. In
our method we analyze the polar distance between two
points on a unit sphere, defined as the cosine of the angle
between them. If the points are given in cartesian coor-
dinates z = (z1, %2, %3) it can be calculated by the scalar
product t = (z,y) = z1y1 + T2y2 + w3y3 very easily. This
distance is equal to 1 if the angle between two points is
zero and therefore it is suitable to define a weighting func-
tion. Our wei%hting functions are spherical polynomials of

degree k, ng -1 - R, k=1,2,... , r €[0,1)
given by
0 for —1<t<r
B (1) :={ EnE for  r<t<1. (1)

This function is printed in Figure 2 for different values of &
and fixed r. The spherical representation of this functions
for a given point y, for example y = (0,0,1), is plotted
in Figure 3. The function has rotational symmetry about
the axis through the point y and compact support. Points
lying on the same latitude have the same spherical distance
to the North-Pole y. Points with spherical distance greater
than r = 0.5 (angle > 60 degree) lie outside the defined
spherical cap around y and get the weight zero.

The calculation of the height at a basis point can then
be formulated as analyzing the distance between the ba-
sis points and the reference points and as weighting the
heights of the reference points in the spherical cap accord-
ing to their distance. This can be formulated as summa-
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Figure 3: Spherical representation of ng) centered at the
North-Pole for k = 3 and r = 0.5

tion

o(@) = > hB (2, 9) 2)

where £ are the basis points, y are the reference points
and hy is the height at the reference points. P{rk)((x,y))
denotes a normalization of the function ng) defined in (1)
where the argument is the scalar product (z, y). The choice
of this normalized function is due to (Cui, et al., 1992) and
discussed in (Brand, 1994) in more detail. In contrast to
the next neighbour approximation the height of the basis
points depends not only on one reference point but also on
the reference points in a spherical cap of radius r around
them. For the evaluation of the height at a sampling point
z formula (2) is used as well, so that our approximation
g(#) can be calculated according to

9(=) = Y e(2)B (=, %) (3)

xT
with

o(z) =Y hB((z,9)). o)

The functional parameter r depends on the distribution
of reference points and basis points. Its choice is similar
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to the choice of the mesh-width which characterizes the
resolution of a DTM given by a height matrix. The coef-
ficients ¢(z) of the functional expansion (3) in connection
with the functional parameter r represent the DTM in our
approach. This approximation method is tested on several
artificial and practical examples in (Brand, 1994) for dif-
ferent sets of reference points and basis points. It works
well but has the following drawbacks :

e A suitable value for the region of influence r is not
known in advance. Its choice can be very delicate.

If the characteristic scale of the reference points
varies in space, one has to choose the value of r
according to the smallest feature of the scale size
in the region. If not doing so, essential information
may be lost. A spatially variable value of r would
be appropriate in this case.

The error of the DT'M can only be calculated at the
end of the process. An improvement requires a com-
pletely new run with modified r and/or modification
of the given grid.

These drawbacks can be avoided by a hierarchical algo-
rithm.

3 THE NEW ALGORITHM

The new algorithm can be described as follows

(1) Choose a relatively small scale parameter ro (large
spherical caps) and relatively coarse basis grid T'o.

(43)
(i5)

(1)
(v)

Compute an approximation go from (3).

Compute the error E; at the given data (reference
points).

Decide wether F; is sufficiently small in all parts of
the domain. If true stop.

Increase the scale parameter to r1 (smaller spherical

caps) and refine the basis grid (grid of coefficients)
to P]

Compute the approximation of the discrete error E
in those parts of the domain where E; is above the
threshold in (iv). Add this contribution to the ap-
proximation obtained in (11).

(v1)

(vit) Iterate steps (i11) to (vi) up to the situation where

(a) The error E; is sufficiently small in the whole
domain or

(b) The refinement of the grid T'; approaches a cell

size where the number of points from = that

serve to determine a particular coefficient de-

creases below a threshold which ensures suffi-

cient averaging

Profiles along the equator of the resulting succesive ap-
proximation (first 3 steps) for an artificial example are
represented in Figure 4. The height of the reference points
are plotted as circles, the basis points as crosses.

This algorithm is characterized by different resolution and
the adaptive choice of the basis points. First tests have
been conducted with several basis grids described in (Free-
den, Schreiner, 1993). In (Brand, et al., 1995) a different
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Figure 4: Synthetic example, profiles along the equator for
different levels of approximation

hierarchical grid with tree structure has been employed
which considerably speeds up the computation. It can be
described as follows : each point of a grid I'; has n sons
located in the neighbourhood of this point. The union
makes up I'j41. With respect to the unit square, which
can be transformed to the sphere, a sequence of basis grids
reads I'o = {(1/2,1/2)}, T1 = {(1/4,1/2);(3/4,1/2)},
Ty = {(1/4, 1/4); (1/4,3/4); (3/4,1/4); (3/4,3/4)} and so
on, each of the previous points having two sons alternately
in horizontal and vertical direction. This organization al-
lows easy and efficient management of the basis points.
Similarly, the hierarchical organization of the data points
in form of a quadtree (see e.g. Samet, Weber, 1988) is
introduced for very large data sets. By sorting the given
reference points as well as the above defined basis grids
according to their latitudes the calculation of the sums (3)
is simplified. The calculation of the scalar product has
only be done in a small region around the sampling point,
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which can be expressed by differences in latitude and lon-
gitude, so that the whole data set has not to be worked
through.

The above hierarchical algorithm is triggered by the mul-
tilevel approaches (multigrid, hierarchical basis, wavelets)
developed in mathematics in the last years. An important
component is error control which is done after each step.
The surface is built up successively and in every step er-
rors in the given data set can be eliminated. The method
is extremely simple in its principle and efficiently imple-
mentable. It is also very flexible and by its adaptivity may
significantly reduce the computational cost with respect to
other approximation methods.

4 EXAMPLES

The new algorithm was tested first with a data set of Aus-
tralia. The elevation data (5,220 points) were derived from
the data set ETOPOS5 (Warnken, 1995) and have a maxi-
mal resolution of 0.5° x 0.5°,i.e. 1 point per 55 km?. The
main aim of this test was the automation of the processing.
We had chosen very simple grids (Brand, et al., 1995; Free-
den, Schreiner, 1994) and the scale parameter r (region of
influence) had been chosen to yield constant overlapping
on each level. A regular grid DTM (97 x 81 points) was
obtained in 15s (HP 9000/700) and is shown in Figure 5.
The maximum error is 352 m, the mean error 13.5 m. Sim-
ilar height accuracy figures had been computed using the
commercial software HIFI (Ebner, et al., 1988), which is a
package covering a wide range of DTM applications.

theta

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
phi

0 150 300 450 600 750 900 1050

elevation
Figure 5: DTM of Australia

In a second example the shape of the asteroid 243 IDA was
determined. On its trip to Jupiter the Galileo spacecraft
took images of the asteroid IDA and its satellite Dactyl
by a SSI-CCD camera. Since the irregular shape of IDA
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affects physical properties of the asteroid, its determina-
tion is of great interest. In (Thomas, et al., 1995) limbs,
terminators and shadow data were used in addition to 101
control points to derive a 2° x 2° shape model. In our case
more than 30,000 image points were found by digital image
matching. From these image points 10,350 ground points
were calculated by forward intersections using the exte-
rior orientation parameters, which were determined previ-
ously by bundle block adjustment (Ohlhof, et al., 1996).
Also points in deep space, which are not located on IDA’s
surface, were found by the matching algorithm. Single
outliers could be detected by the error control feature of
our new DTM approach, clusters of outliers were elimi-
nated by analyzing the z-coordinates of the ground points.
Using 7,535 reference points with spherical coordinates
0° < ¢ <230° and 45° < ¥ < 145°, a 1° x 1° shape model
within this region was computed using the new spherical
approach.
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Figure 7: Shape model of asteroid IDA (x-axis: E-W, z-
axis: N-8)

The distribution of the reference points is represented in
Figure 6, the resulting DTM in Figure 7. The DTM was
calculated in 40s (SUN Sparc 20), starting with a 4 x 4
grid and scale parameter r = 0.5 ending after 9 iterations
with 5,568 basis points using r = 1 — 27!, The maximum
error in the reference points is 900 m, the mean error 91
m. In Figure 8 it can be seen that the maximum errors
occur at the boundary of the observed area and in areas
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Figure 8: Position of errors > 600 m in the DTM of IDA

where reference points are not available. In these regions it
is obvious that the given reference points cannot represent
the surface adequately.

5 CONCLUSIONS AND OUTLOOK

In this paper we have presented an efficient hierarchical
method for global DTM modelling, which makes use of a
sphere as reference surface. It is based on the principle
of series expansions and employs locally supported basis
functions. The crucial point is the explicit computation
of the error on each level which allows the adaption of a
regular grid to a given arbitrary set of reference points.

Digital terrain models of Australia and part of the asteroid
243 IDA, demonstrate the power and flexibility of the new
approach.

Further extensions concern the usage of reference points
with different accuracy, e.g. including control points mea-
sured by an operateur. FEach reference point can be
equipped with an additional weight in the summation (3).
In connection with the applications in Geodesy, Geology
and Photometry, the calculation of the normal vector to
the surface as well as the modelling of local features (e.g.
craters) are very interesting (Duxbury, 1991).
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