AN EFFICIENT SUPERVISED CLASSIFICATION METHOD OF REMOTELY SENSED MULTISPECTRAL IMAGES
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ABSTRACT

A method is proposed for supervised classification of remotely sensed multispectral images with high accuracy and high
efficiency. The method Modified Linear Discriminant Function (MLDF) produces a binary division tree by dividing training
data until ali the terminal nodes of the tree have only one kind of category. After production of the tree, whole image data are
classified. - Numerical simulation indicates the method has as high accuracy as Maximum Likelihood method does and as

high efficiency as a Binary Division Tree classifier does.

INTRODUCTION

Supervised classification is one of the basic processes in
the application of remote sensing technology to various fields.
It is indispensable analysis of remotely sensed multispectral
images, for example, in environmental monitoring. For
monitoring earth environment using satellite, it is important
that a classifier must have high efficiency as well as high
accuracy. Among the methods proposed so far, maximum
likelihood classifier (MLH) is well-known and most accurate
on the assumption that the generality of training data is
satisfied (Fujimura, 1978), but it requires much time to classify
the image. On the other hand, Binary Decision Tree (BDT)
classifier (lnamura, 1979) is one of the most efficient
methods, but it has lower accuracy than MLH does on the
assumption above. A method having high efficiency as well
as high accuracy has been required.

Here, we propose a new method having both high accuracy
and high efficiency. We call the method as Mcodified Linear
Discriminant Function (MLDF). The method MLDF is
expanded from BDT. We introduce linear discriminant
function into boundary selection in BDT. The division
boundary of MLDF is determined using binary division
technigue in a clustering method BDC-LDF (Hanaizumi,
1995a, b). The boundary is selected among valleys in
density histogram obtained from image data projected onto
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a single dimensional subspace. As we do not use the
statistics (such as mean and variance) of training data, we
can regard MLDF as a nonparametric classifier.

in this paper, we describe the principle and the procedures
of MLDF. The validity of MLDF is confirmed by numerical
simulation and classification of real remote sensing images.

PRINCIPLE

In the feature space, MLH produces hyper-quadratic
boundaries which theoretically achieve the highest accuracy
with much time for the classification. BDT achieves high
speed with some loss of accuracy by limiting number of
boundaries for binary division of data. It is known that the
accuracy of linear discriminant function (LDF) algorithm is
identical to that of MLH when all training data sets have the
same variance-covariance matrix. By using LDF algorithm
hierarchically, we achieve highly accurate (as well as MLH)
and highly efficient (as well as BDT) .

The basic ideas of the proposed method MLDF are to label
pixels in training area with category identification, to merge
all the pixel data in all training areas into one group and to
apply binary division process to the group so that all data in
a terminal node have the same identification. After
production of decision tree, all image data are classified as
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flowing down the tree.
DATA COMPRESSION

At first, we select training data for the classification by
assigning training areas. As these training data contain
noise, we reduce the noise by compression of training data.
We compress them by averaging pixel densities of
neighboring 4 pixels. This averaging process achieves both
reduction of processing time and stabilization of boundary
for data division. After averaging, we assign category
number to all training data as an identifier, and merge them
into a group.

PROJECTING DATA ONTO 1D SUBFEATURE SPACE

In boundary search for binary division of training data, the
increase of the number of spectral bands reduces efficiency.
In order to reduce the quantity of data with the minimum
loss of information, we apply principal component analysis
(PCA) to the merged training data and obtain the first two
principal components. We suppose that image data have p
spectral bands. Using variance covariance matrix X, the
PCA process is written by

A

BB =

B =1[b,b, .. b,

where, A, {i = 1, 2, ..., p} are eigen values and
M2zA 22 /lp, andb {i=1,2, .. p}eigen vectors. The
first two principal components P, and P, are obtained from
inner products between spectral density vector assigned to
a pixel and eigen vectors b, {i = 1, 2}, respectively. For
abbreviation, we define PCA vector P as

P =R +Jh. (3)
After compressing the training data into 2D PCA vectors,
we produce 8 histograms from inner product among PCA
vector P and projection vectors

W, = cos(km/8) + jsin(kn/8) (k =0, .., 7). (4)

Now, the merged training data are compressed onto 1D
subfeature space with the minimum loss of information about
data distribution, and we obtain 8 histograms.

SELECTION OF DIVISION BOUNDARY

We firstly select a candidate for the optimum boundary for
the binary division in each of 8 histograms, then determine
the optimum boundary among the candidates. Generally
speaking, the optimum boundary in clustering minimizes the
ratio of within-group-sum-of-squares to intragroup-sum-of-
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Fig. 1 Valleys and boundary selected in a histogram.

squares. We adopt a clustering criterion for the selection of
the optimum boundary.

We suppose that number of training data is / and a histogram
has total-sum-of-squares S, and assume that histogram is
divided into two groups which have /, and /, data and within-
group-sum-of-squares §, and S, respectively, as shown in
Fig.1. The total-sum-of-squares S, is written as

S, =8 +S5, +S5, (8)

where, S, is intra-group-sum-of-squares. We select the
candidate among valleys in the histogram minimizing an
index

R=S +5,. - (6)

As histograms have own dispersion in abscissa, we use
normalized index R / §, for the selection of the optimal
boundary among the candidates. The boundary in an one
dimensional subfeature space corresponds to a hyperplane
in the full feature space. These division procedures are
applied recursively until al groups at terminal nodes have
identical category number. The coefficient vector projecting
spectral density vector onto the histogram on which the
optimal boundary is selected and threshold (position of the
boundary) are stored at the node of the binary division tree.

CLASSIFICATION OF WHOLE IMAGE

After production of binary division tree from training data,
we classify whole image data by ﬂowing pixel data down the
tree. At a non-terminal node, we obtain inner product
between pixel data and coefficient vector assigned the node,
compare it with the threshold assigned, and determine the
division path accordingly to the result of the comparison.

PROCEDURES

The following is procedures of MLDF.

1)Select training areas for categories to be classified.

2)Apply data compression process to pixel data in all training
areas.

3)Label all compressed data. We use category number as
the identifier.

4)Merge all compressed data into a group.

5)Apply PCA process and obtain the first two components.

6)Produce 8 histograms from the components.

7)Select the optimal boundary for binary division and divide
data group into two subgroups.
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8)If all data in a subgroup have the same identifier, stop the
further division of the subgroup, else repeat procedures 5)
- 7) until only one identifier is observed in the subgroup.

9)Classify whole image by flowing pixe! data down the tree.

Figure 2 indicates the procedures.
SIMULATION

We evaluate the performance of MLDF in terms of accuracy
and efficiency by comparison with that of MLH and that of

[Selection of training data|

[Compression of training data|

[Production of 8 histograms using PCA |
]

[Selection of the optimal boundary |
I

Making new node and store
projection vector & threshold

All members of
all subgroups have the
same identifier ?

No

Yes

[Classification of whole image|

End

Fig. 2 Processing flow of MLDF.

BDT.. These three methods were applied to an artificial
image (256 columns x 256 lines x 3 bands) having 16 uniform
areas with multidimensional normal noise component whose
variance covariance matrix is

20 40 |
30 , 40
60 30
5] [s0
Band 1 Band 2 Band 3

Fig. 3 Spectral densities of the artificial image.

10.965 0.996 -0.833
0.996 15718 -1.830
-0.833 -1.830 4.239

= )

Figure 3 shows spectral densities of the image. The image
has 12 categories. We selected upper-left 10 x 10 pixels
square as training area for every category. We applied
MLH, BDT and MLDF to the image with changing the
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Fig. 4 An example of data set (a = 1) : (a) original image, (b)
result processed by MLH, (c) one by BDT and (d) by MLDF.
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Fig. 5 Accuracy and efficiency of MLH, BDT and MLDF.

magnitude of noise components by o (a=1~5). In these
processes, we consider that generality of training data is
perfectly satisfied. Figure 4 shows the original image (a),
result processed by MLH (b), one by BDT (c¢) and by MLDF
(d), where o = 1. The result of numerical evaluation is
indicated in Fig. 4, where we plot mean correct classification
rate and processing time for several magnitudes of noise
component. From these result, we see that accuracies for
all methods decrease with increase of noise, but accuracy
of MLDF is always as same as that of MLH. On the other
hand, MLDF is highly efficient as well as BDT.

ACTUAL IMAGE PROCESSING AND DISCUSSION

We evaluate the performance of MLDF by using two types
of actual remote sensing images.

COASTAL REGION IMAGE

Some coastal region images include urban and sea areas in
their scenes. Data in the former area have very large
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variance in spectral density but those in the latter very small

- } Table 2 Categorics used in the processing.
one. Itis known that larger variance category often appears

on smaller variance category areas in results processed by No. . Category No. Category
MLH. In order to evaluate the performance of MLDF for — - — -
such images, we apply the three methods to a coastal region ! . Pine (medium) | 8 ¢ Zinc roof (pink)
LANDSAT/TM image having 256 columns, 256 lines and 3 2 Baresoil (light) | 9 |  Pine (dark)
spectral bands, and compare their results. Figure 6 shows 3 | Field (radish) | 10 Swimming pool
original image (a), result processed by MLH (b), one by BDT 4 Rice field 11 Zinc roof (green)
(c) and by MLDF (d). In these processes, we use 9 5 Concrete 12 Pine (light)
categories; urban area, sea, vegetation, river, and others. - } : <
Processing times are 23 seconds by MLH, 3 seconds by 6 : Field (cabege) | 13 = Bare soil (dark)
BDT and 5 seconds by MLDF. Several pixels in river are 7 ‘Slate :

miss-classified into urban area in the results processed by
MLH and by BDT, but MLDF does not yield such error.

AGRICULTURAL REGION

@ . (b)

Fig. 7 Training areas (a) and test areas (b).

numerical evaluation. Figure 8 shows original image (a),
result processed by MLH (b), one by BDT (c) and by MLDF
(d). Result of numerical evaluation of accuracy is shown in
Table 3, where upper, middle and lower lines indicate correct
classification rates in MLH, BDT and MLDF, respectively.
Mean correct classification rate (MCCR) and processing time
are also listed in Table 4 with results for three spectral band
image for the same region. We chose spectral bands 3, 4

(c) (d)
Fig. 6 Original Kawasaki image (a), result processed by
MLH (b), one by BDT (c) and by MLDF (d).

We have had a data set acquired on Dec. 1977 at Fukue,
Aichi prefecture in Japan. The data set consists of airborne
MSS images and ground truth. We applied the three
methods to the data set. We use 512 x 512 pixel image
with 5 spectral bands whose wavelength regions are shown
in Table 1. Table 2 indicates 13 categories we used, and
Fig. 7 indicates training areas (a) and test areas (b) for

Table 1 Observation band of multispectral image.

Band No. : Wavelength [um]
I 035-040
21047 -049
3 054-056 © T S @
4 0.66 - 0.68 Fig. 8 Original Fukue image (a), result processed by MLH
5 0.80 - 0.90 (b), one by BDT (c) and by MLDF (d).
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Table 3 Confusion matrix for MLH, BDT and MLDF.

Category

100.00)

Table 4 Mean correct classyiﬁcation rate for
MLH, BDT and MLDF.

5 band 3 band
Method| Accuracy [Time | Accuracy | Time
MLH 96.79 [%] | 303 [s]| 95.48 [%][133 [s]
BDT 89.03 18 90.88 11
MLDF | 94.06 20 92.73 19

and 5, and evaluate the change of accuracy and efficiency
using the identical training and test areas. Table 4 tells us
that MCCRs slightly decrease or almost the same accordingly
to reduction of number of spectral bands five to three, and
that processing time in both MLH and BDT depends on the
number of spectral bands. In MLDF, processing time fully
depends on size of binary division tree, therefore, much
information brought by larger number of spectral bands may
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gives more suitable division boundary which efficiently
reduces size of the tree. This is the reason why processing
time of MLDF in classification of 5 spectral band image is
almost as same as that of 3band image. Thereis possibility
that MLDF is more efficient than BDT.

CONCLUSIONS

We proposed a highly accurate and efficient method MLDF
for supervised classification of remotely sensed multispectral
images. The method MLDF is expanded from BDT which is
very efficient. Image data are projected onto eight 1D
subfeature spaces to produce histograms with compression
of data. The division boundary is selected among all valleys
in histograms using a clustering criterion that the optimal
boundary minimizes the ratio of sum of within-group-sum-
of-squares to intragroup-sum-of-squares. MLDF produces
binary division tree by applying the division process
recursively. Each node of the tree has coefficient vector for
data projection and threshold for data division.

As division boundary in histogram corresponds to hyperplane
in full feature space, MLDF is regarded as a kind of linear
discriminant function method.  On the other hand, as no
statistics for training data is used in selection of division
boundary, MLDF is also regarded as a nonparametric
supervised classification. method.  From evaluation of
performance using artificial image and actual remotely
sensed multispectral images, it is confirmed that MLDF has
as high accuracy as MLH does and as high efficiency as
BDT does.  Improvement of MLDF in term of efficiency and
analysis of classification with less generality training data
are subjects for a future study.
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