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ABSTRACT

Systems for modelling of surfaces are an indispensible tool in geodesy, photogrammetry, geo-informatics and many other
disciplines. Common systems are designed for applications dealing with the surface of the earth. In general, these systems fail in
modelling more complex structures, such as parts of the human body or artificial buildings. In this paper an alternate system to
model arbitrary surfaces is presented.

The surface is decomposed into basic topological elements: nodes, edges, triangles - and tetrahedrons for bodies. The structure of
the surface is determined by the topological relations between these basic elements. These topologic relations have to be deduced
from the scattered data-points, what is done by a triangulation of the measured surface-points. The triangulation uses a local order-
criterion which utilizes the surface-normals in the data-points. A major element in modelling of surfaces are lines, such as break-
lines, contour-lines or boundary-lines. These lines are topological constraints and are incorporated within the triangulation. To gain
a better representation and to filter errors of measurement, these lines are approximated by piecewise cubic polynomials in space.
The adjustment is done locally by a fully three-dimensional algorithm working on a sub-network.

KURZFASSUNG

Systeme zur Modellierung von Oberfléchen sind ein wichtiges Hilfsmittel in Geodisie, Photogrammetrie, im Geo-Informations-
wesen und vielen anderen Bereichen. Die dabei gebriuchlichen Systeme sind auf die Modellierung der Erdoberfliche zugeschnit-
ten. Komplexere Flichenstrukturen (Kunstbauten, menschliche Kérperteile, etc.) konnen damit i.a. nicht modelliert werden. In
dieser Arbeit wird ein alternatives- Konzept zur Modellierung beliebiger Oberflichen vorgestellt.

Die Fliche wird in topologische Grundelemente zerlegt: Knoten, Kanten, Dreiecke - und Tetraeder fiir Korper. Die Gesamtstruktur
der Fliche wird durch die Nachbarschaftsbeziehungen zwischen diesen Grundelementen beschrieben. Die gemessenen
Oberflichenpunkte liegen meist als unstrukturierte Punktwolke vor. Daraus sind die topologischen Beziehungen abzuleiten. Dies
erfolgt durch eine Triangulation (=Dreiecksvermaschung) der Datenpunkte. Die Triangulierung verwendet ein lokales Ordnungs-
kriterium, welches die Flichennormalen in den Punkten ausnutzt. Bei der Modellierung von Oberfldchen stellen Linien, wie
Bruchlinien, Formlinien oder Randlinien, ein zentrales Element dar. Diese Linien werden als topologische Zwangsbedingungen in
die Triangulation aufgenommen. Um eine gute Oberflichenmodellierung zu erreichen, und um zufillige MeBfehler zu filtern,
werden die Linien durch kubische Splinekurven approximiert. Die Ausgleichung erfolgt lokal in Subnetzen und arbeitet vollig
dreidimensional. : ‘

1. INTRODUCTION tiality to model arbitrary surfaces. Resulting from problems
) with common systems for terrain-modelling, there arises a set
In many parts of science the necessity of a mathematical re- of requirements:
presentation of surfaces occurs. In the field of geo-science this + Usage of the original data as a main element in model-
surface often is the surface of the earth. To perform the various ling.

operations with the surface, a model of the surface is to be
created first. In geo-sciences the so called 'Digital Terrain
Models', in short DTM are commonly used: The surface is
represented by a regular grid. The heights in this grid, together
with algorithms for interpolation, form the model of the surface
(Kraus, 1987). Such kind of surface-models is very efficient for
many applications. But sometimes problems occur: e.g. the
modelling of vertical walls or overhangs is not possible. These
problems can only be solved with a new and different way of
modelling. In this paper a different approach to avoid these
problems is presented.

2. BASIC CONCEPT
2.1 Requirements
The main requirements for a new concept of surface-modelling

are independence of the coordinate-system, as well as indepen-
dence of the orientation of the surface in space, and the poten-

Possibility of dynamical editing of the data - the aim is
'progressive sampling'.

Local algorithms instead of global ones.

Smooth surface representation with filtering of random
errors.

Separate smoothing of lines.

Modelling of thematic attributes.

Automatic detection of gross errors.

Automatic reduction of redundant data.

2.2 Theoretical model

Common digital terrain models, as well as Geo-Information-
Systems, are based on two-dimensional data-models, i.e. the
general data-structure and the used algorithms are essentially
2D. The modelling of the surface happens in the ground plane
and the object-height is reduced to an attribute of the twodi-
mensional points. Hence the surface is represented in the form

z=flx,y), with f generally the object-height.
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This approach is called 2.5D and is condemned to fail for
arbitrary surfaces.

The modelling of real three-dimensional surfaces needs a 3D-
datamode] for the exact geometric and thematic representation.
Whereby the meaning of '3D' not only implies the usage of
three coordinates, but furthermore complete independence of
position and orientation of the surface in space, i.e. indepen-
dence from the coordinate-system.

This can be achieved by decomposing the surface into simple
pieces, thus obtaining high flexibility concerning the shape of
the surface. In our approach the surface is described and mo-
delled only with few basic topological elements. These are the
commonly used simplices: node, edge, triangle and tetrahedron
(Frank, 1986, Molenaar, 1994). These simplices are the basic
geometric entities of the respective dimension, see figure 1.

0-simplex node: o

o—-0

N

1-simplex edge:
2-simplex triangle:

3-simplex tetrahedron:

Fig. 1: Simplices of respective dimension.

The adjacency and incidence relations among these basic ele-
ments determine the topology of the surface (Neureither,
1992). The simplices together with their topological relations
form a skeleton of the surface. But it is not sufficient to
describe a surface only with topological relations. The surface
also has to be determined geometrically. This geometric de-
termination is done by relating the nodes uniquely to the mea-
sured data-points.

The topological structure automatically can be used for mathe-
matical representation of the surface, which can be done, for
example, with cubic Bézier-patches - which is not part of this
paper (Pfeifer, 1996).

An important element in the modelling of surfaces are lines.
These lines are used to model discontinuities of tangent-planes,
to exclude regions and for many other tasks. How to include
these lines into the basic concept? Lines can be described as an
ordered, connected aggregation of nodes and edges, i.e. a for-
mal sum of nodes and edges called 'chain' in Frank, 1986.
Lines are topological constraints which have to be kept and
preserved in the triangulation.

2.3 Discussion

The presented approach has some advantages in comparison to

former concepts in surface modelling (refer to the requirements .

in chapter 2.1):
The simplices, as well as the topological relations are
completely independent of the coordinate-system.
The topological relations determine the situation of
adjacent elements. These neighbourhood-relations can
be instantly used for local algorithms.
The concept is flexible enough for the modelling of
arbitray surfaces.

The concept is general in the sense that it can be used
to model lines, surfaces and bodies. Hence different
dimensions can be combined.

The topological relations can be used immediately for
the mathematic representation of the surface, e.g. with
triangular patches.

The geometric decomposition of the surface can also be
extended to thematic attributes related to the surface,
thus to model non-geometric information.

The main disadvantage of the approach is the problem to find
the topological relations which are not known a priori. A solu-
tion to this:problem is presented in the following chapter.

3. BUILDING THE TOPOLOGICAL RELATIONS

3.1 Triangulation

In general the topological relations between the data-points are
not ,;measured®, i.e. no further informations than the coordina-
tes are sampled. The topological relations have to be deduced
from an unorganized cloud of points in space. Furthermore they
are not uniquely determined, i.e. it depends on someones inter-
pretation which points can be seen as nelghbours on the sur-
face and which can not.

A well known method to establish these relations is a triangu-
lation of the data-points (Cline 1984). A triangulation is a
partition of the surface into triangles with the data-points as
vertices. The triangles ‘mustn’t overlap, nor are holes allowed.
There exist many solutions to the triangulation of points in the

plane, but only few for triangulation of points of R, Three
dlfferent approaches for 3D-triangulations can be suggested:
Tessellation with tetrahedrons and extraction of the
desired surface.
Triangulation of the 3D-points by utilizing additional
information or properties of the surface.
Projection of the problem into R, e.g. triangulation in
a plane, such as the ground plane.

A method of the second approach has been presented in Choi,
1988. But this method has a big disadvantage: a distinct point
is necessary, from which the whole surface has to be visible.
Such an outstanding point can not always be guaranteed. The
method presented here is a further development of Choi’s
method, without the necessity of the above mentioned point.

The developed method works locally and incrementally - to
support progressive sampling. The insertion of a point happens
in four steps:

Locating the triangle the point belongs to.

Integrating the point within the triangle.

Optimizing the triangulation.

Establishing constraints (lines).

3.2 Locating the triangle

The first step of inserting a point is to find the correct triangle
the point belongs to. This is done by using an order-criterion.
Order is a relation, which stands between geometric and topo-
logical relation (Schlieder, 1995). In the plane a point lies
inside a triangle, if it lies left of every edge of the triangle
(assuming the edges are ordered in anticlockwise manner).
This left/right-relation is clear in the plane. But in 3D-space no
such relation exists between edges and points.
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To substitute this order-relation for the edges of the triangula-
tion, Choi uses the given distinct point. In our approach
another - more intrinsic - property of the surface is utilized: the
surface-normal in the data-points.

With the use of the normal a left/right-criterion can be
established: Let k be an edge of the triangulation with the
endpoints A and B, with coordinate-vectors g and b. Let n be
the surface-normal in A, and P, coordinate-vector p, the point
to be inserted. P lies to the right of the edge &, if

= (kxn).(p-a)) > 0 (figure 2).

Fig. 2: Order-criterion using the surface-normal.

This order-criterion is repeatedly applied to the edgés of the
triangulation, until the correct triangle is found. -

The surface-normal in a data-point is estimated with the use of
the neighbours of the point. A common method is to build the
normals on every triangle the point belongs to. The normal in
the point results as a weighted sum of these triangle-normals.
Whenever the triangulation changes, all concerned normals
will be refined. Sometimes the normals are given a priori, in
that case these vectors will be used - e.g. in automatic image
matching the object-normals easily can be estimated.

Nevertheless, the estimated normals sometimes are only rough
approximations of the actual normals what may Iead to errors
in the locating-step.

If additional information exists - such as break-lines or
contour-lines -, they will be utilized for the locating of the
triangle, as well as for the estimation of the normals. Finally, it
is planned to check the correctness of the integration with
regard to blunder detection.

3.3 Integration of the point

As soon as the correct triangle has been found, the point will
be inserted, i.e. all necessary edges are build. The point can
also lie outside the triangulated region. In that case the point
has to be connected with the ,,visible** part of the boundary.

3.4 Optimization

As mentioned above, the topological relations between the
data-points are not uniquely determined. Nor is the triangula-
tion of the point-set. One has to formulate a criterion to de-
termine the result of the triangulation. Such criterions are
known as optimization-criterions, as the criterion optimizes the
triangulation in a specific sense.

Commonly, as in this work, the optimization-criterion is
applied edgewise (Cline, 1984 and Choi, 1988): an existing
edge of the triangulation will be tested, whether the criterion is
hurt or not. If the edge doesn’t match the criterion, it will be
swapped in the corresponding quadrilateral - see figure 3.

B

)

Fig. 3: Swapping of an edge.

The best-known optimizing-criterion is the circle-criterion,
which is equivalent to the max-min criterion. This criterion
leads to the well-known Delaunay-triangulation. This triangu-
lation is optimal in the sense that it produces regular triangles,
near to equilateral triangles. Unfortunately, these algorithms
are 2D only.

For our 3D-triangulation several criterions have been imple-

mented and tested:
'3D-Delaunay’ - the minimum angle of two adjacent tri-
angles is maximized.
'‘Smoothness1’ - the angle between the planes of two
adjacent triangles is maximized, thus to gain a smooth
surface.
'Smoothness2' - the minimum angle between the planes
of the two adjacent triangles and the four neighbour-
triangles is maximized. This method was presented in
Choi, 1988.
‘Smoothness3' - a combination of Smoothness] and
Smoothness2.
'Greedy' - the sum of the length of the edges is
minimized. The greedy-triangulation is a widley used
method.
"2D-Delaunay' - the triangulation is optimized by
applying the Delaunay-criterion to the ground-pro-
jection of the points. Naturally, all other 2D- cntenons
could be used also. :
combinations - all above criterions can be combined by
a target function to form new criterions.

The optimization-criterions can be - or have to be - extended
with further constraints, e.g. conditions to avoid irregular
swaps, which would lead to overlapping triangles.

3.5 Constraints

For a flexible modelling of surfaces, it should be possible to
apply topological constraints on the triangulation. A prominent
example are lines, which are included as a chain of edges.
These edges must exist within the triangulation. In the last step
of the insertion of a point such constraints are introduced.

Figure 4 shows an example for a constraint-edge. The building
of this edge works again with the use of the local order-
criterion.
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Fig. 4: Building of a constraint edge.
3.6 Discussion

The presented method satisfies the requirements noted in
chapter 2. The order-criterion works independently of the
coordinatesystem and is (nearly) independent of the shape of
the surface. The incremental way of building the triangulation
supports dynamical editing and progressive sampling. The
method is qualified to be implemented only with the use of
local algorithms.

Unfortunately there are two problematic aspects of the method,
which may lead to errors. The first one is the locality of the
order-criterion. This criterion works well in the neighbourhood
of an edge and with moderate surfaces. If the surface is ben-
ding strongly, the criterion will possibly fail. Figure 5 shows a
situation, when the order-criterion says left, but the point
should apparently lie right of the edge k.

Fig. 5: Wrong result of the order-criterion

Another problem is the estimation of the surface-normals.
Especially when only a few points have been inserted already,
the surface is badly represented by these points. Hence the
normals, estimated with these points, do not correspond suffi-
ciently with the actual normals.

These problems can be solved by applying a verification of the
locating-step. This test can be used to detect gross errors of
measurement, as well as to expose wrong locatings.

4 CORRECTION AND SMOOTHING OF LINE-
NETWORKS

Due to the data capturing, points along lines are measured with
more or less accuracy. The unfiltered connection of such a
sequence of line-points would reproduce the real course of the
line just with low or even unacceptable quality. Therefore
measured points are to be considered only as noisy line-sup-
porting-points (LSPs).

By smoothing the course of the LSPs, gross measuring errors
can be found and eliminated. The adjustment of LSP-

sequences, based on a mathematical well-defined type of curve,
enables us to replace the often very extensive measuring data
by other suitable data allowing an unique reconstruction of the
lines. This circumstance is very advantageous because of the
reduction of data-amount.

For the application dealt with, curves consisting of joined cubic
polynomials (Spline-curves) are of advantage. In this case the
course of the curve is uniquely defined by the chosen type of
interpolation (e.g. Osculatory-, Akima-,”Spline-interpolation),
the type of parametrisation (e.g. chordal, centripetal, equidi-
stant) and the location of the (spline-)knots (SKs) between the
separate polynomials (Forkert, 1994). Very long lines and,
furthermore, more or less expanded networks of several lines
can occur in practice. Considering manipulation of data and
computing time, it is therefore necessary to use such a kind of
curve by which only the LSPs within a small surrounding area

.(around the SK-interval to be calculated) have any influence
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concerning the course of the curve. This demand also helps to
avoid disturbing oscillations of curves due to the position of
LSPs laying far away with regard to the part of the curve being
calculated at the time. The estimation of the spatial position of
the SKs is therefore done based on the Osculatory-interpola-
tion.

The possibility of a correct stochastic inteérpretation of the
smoothed course of the LSPs is guaranteed by applying an
adjustment following the method of least squares. The correct
adjustment of line networks (free of gaps) is a precondition for
modelling surfaces with high quality. Therefore, if there exists
a junction or a crossing of several lines, it is not only deman-
ded each line to be smoothed separately, but furthermore that
such a line-net-knot (LNK) itself gets a unique position
without any contradiction. (In many cases, a LNK is not captu-
red directly by a measured LSP but has to be calculated by
intersection.)

In general, line-networks contain more than one LNK and can
get very extensive if there are artificial objects to be recon-
structed (like traffic buildings, machine parts or urban areas).
Such big line-networks have to be divided - as far as possible -
into small ‘subnets’ in order to be adjusted independently. In
consequence, the principle of a strict adjustment of the whole
net of lines cannot be followed any longer. This blemish
however has nearly no effect if there are arranged overlapping
areas wherein the LSPs have to be taken into account for both
adjustments whenever two subnets (SNs) join together. De-
pending on the type of interpolation used, an overlapping area
will occur every time a line had to be cut at one end of a SN.
Its extension (number of SK-intervals) depends on the type of
interpolation used. Within the overlapping areas the adjusted
SKs have to be calculated in a way that no gaps remain in the
whole line-network after smoothing is finished. A SN cannot
be cut if there exists a further LNK within that overlapping

area.

o———0 independently adjusted SNs with SKs
< .
o———o whole line-network free of gaps
Fig. 6: Overlapping area of two already adjusted SNs
to be ,,sewed* together without gaps.
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The adjustment of the SN is done by the program system
ORIENT (Kager, 1989), due to its universal possibilities in
adjustment matters. The required data (a planar, possibly
cyclic SN-graph and the LSP-sequences) have to be extracted
(with the help of a ‘rover’ moved along constraint-edges) from
the triangulation for each SN and have to be converted into a
structure suitable for ORIENT. Before a SN can be extracted,
all those candidates of junctions of constraint-lines have to be
detected which are not contained obviously in the captured data
and are therefore not triangulated as LNKs until yet (due to
gaps stemming from the data capture process).

Fig. 7. Lines ending with a junction at another line or
crossing another line. Because the junctions
have not been captured directly with a LSP,
they have to be searched for during the ex-
traction of the actual SN.

Subsequent to each adjustment of a SN with ORIENT, the
quality of the adjustment is verified. As criterion of quality the
deviations of the LSPs from the corresponding adjusted curves
are used. If the deviation from the adjusted curve exeeds three
times the root mean square error of the observations at at least

one LSP, a further adjustment of the SN with a condensed
arrangement of SKs follows. (Until now it is assumed, that
blunder-detection of the LSPs has been done before the SNs
are adjusted.) This loop of optimisation is repeated until the
demanded quality is reached, or a further condensation of SKs
becomes impossible.

After the adjustment of a SN, the courses of the original con-
straint-edges have to be removed from the triangulation and,
correspondingly, the adjusted ones have to be triangulated
anew. In addition, the user shall have the possibility to judge
and edit the results of the adjustment in a graphical way,
before a new triangulation of the adjusted SN follows.

5 IMPLEMENTATION AND RESULTS

The surface is modelled - as described above - by decomposi-
tion into simple objects and the determination of the relations
among those. This object-orientated concept imposes an object-
orientated implementation. The main attributes of these objects
are the adjacency and incidence. relations among them.
Thereupon bases an important concept of the implementation -
the 'rover - concept: Rovers contain references to few data-
objects, ang perform, under use of the objects relations, local
operations on these objects. E.g. a 'triangle-rover' contains
references to the three vertices of a triangle and performs
operations, such as : ‘

changing to the neighbouring triangle

calculating the triangle-normal

inserting of a point into the triangle

*  positioning on the triangle, nearest to a given point

A rover only works locally and always processes few and ad-
jacent data-objects.

The presented concepts were implemented and tested. Espe-
cially the various optimization-criterions were examined in
regard to their characteristics and properties.

Results of the presented methods are shown in figure 8 and 9.

—

e

Fig. 8: Triangulation of a sand-pit. About 360 points have been measured. A combination of minimizing the maximum angle
and maximizing the angle between two adjacent triangles has been used for optimization.
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Fig. 9: Drawing of the adjusted line-network of a crossmg of two highways with view onto the spread of the LSPs, SKs and

LNKs.
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