DTM System SCOP in a New Technological Generation

L. Molnar, J. Wintner, B. Wéhrer
Institute of Photogrammetry and Remote Sensing, The Vienna University of Technology, Vienna, Austria

ISPRS Commission IV, WG 4

KEYWORDS: DEM/DTM, Software Development, System Integration, GIS Integration

ABSTRACT:

According to the "Principles for a New Edition of the Digital Elevation Modeling System SCOP" [M092] presented at the
Washington congress of ISPRS, a cross-platform, object oriented application frame has been created including GU!,
graphics, and client-server components. Some major SCOP functionality has been transferred to this frame already, and
new functionality has been added (in the first line Topographic Data Management [Ho96], and subdividing the model
surface into regions). An introductory overview of the system is given, intended in the first line for qualified and

experienced DTM/DEM specialists.
1. INTRODUCTION

At the Washington Congress of ISPRS, "Principles for a
New Edition of the Digital Elevation Modeling System
SCOP" have been presented [M092]. At the very least full
ten man-years of R&D have been invested into realizing
those principles. An application frame (XX, see chapter 2)
has been developed to dissolve "the contrast between
merits and disadvantages of [university-based] research
programs" as compared to commercial products
“concerning, in the first line, object oriented design,
graphical user interfaces, interactive graphics, etc.". XX
provides for client-server applications fully object oriented
in their design; in practice, however, these applications
realize an architecture that can be best classified as
‘componentWare" (see chapter 2).

Created under XX, the component "Topographic Data
Selector and Editor" of SCOP.TDM (Topographic Data
Management, the successor of TOPIAS) is now in beta-
test [Ho96]. A pre-alpha version of SCOP.DTM integrating
under XX some of the major components of the SCOP
system, is demonstrated at the workshop "Advanced DTM
Technology" at this congress.

The paper cited above [Mo92] is concentrating on R&D
issues. This paper is one step closer to application: it is
intended as a first introductory overview of SCOP under
XX.

2. ARCHITECTURE

2.1 Versions

Beside the stand-alone versions, versions to be integrated
into/with host environments are developed. Languages
supported by the first edition(s) to become available are
going to be English and German.

All versions support three modes of operation:
GUI-mode (including also command-line entries),
batch-mode to run unattended jobs, and
slave-mode when controlled by host systems.

2.2 Object Orientation

A prediction that proved to be far too optimistic [M092]:
"On a fine-grained level, with object oriented operating
systems ... and with widespread processor support,
distributed intelligence, and parallel processing - on this
level, object oriented programming is not yet with us. For
this, | think, even developers have to wait for maybe five
years". - One cannot create any CAD class to inherit from
AUTOCAD so to customize its functionality, and there is
no Arcinfo consisting of distributed objects with virtual
member functions - e.g. for digital terrain modeling that
could be augmented by SCOP DTM class objects with
members adapted correspondingly. Taligent Inc. was set
up by IBM and Apple to create such a world - it seems to
have failed, however, for technical and for commercial
reasons [Co95]. "Object-oriented computing has failed. But
component software ... is succeeding" - a headline of Byte
Magazin (May 95). Parallel to this ISPRS congress, the
first Component Users Conference is taking place in
Munich, organized by the ComponentWare Consortium,
supported by, and with speakers from IBM, Siemens, and
other major companies; the issues are such as
"Components: Another end to the software Crisis ?",
"Evaluating Concurrency Models for CORBA Servers",
"Survey of Data Management using CORBA", or "IBM
OpenClass Component Framework".

Components in this sense are (large) modules with
standard interfaces allowing to compose them into
systems. Inside, components may be (and increasingly
are) object oriented, but they may also be written in any
other way, using, e.g., procedural languages and
structured programming techniques - or they may be
hybrid in their design. These components are in most
cases controlled by means of "object broker techniques" -
i.e. as entities showing object oriented features on their
surface but being not necessarily object oriented in their
internal architecture. - Beyond doubt, this is exactly what

‘we termed "autonomous classes" [M092].

569

We suspect, however, that the situtation declared
aggressively as "failure" of large-scale object orientation
above is just due to impatience, to commercial and
journalistic hectics. We tend to consider the
"compnentWare contraRevolution” to be a transitory stage

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996

on the way toward consistent large-scale object
orientation. But we are also in this transitory stage. The XX
framework itself belongs to proper object orientation, it can
address proper objects distributed over a network, but it is
also suited to control independent server modules
designed as ComponentWare.

2.3 Distributed Objects and Hybrid Components

XX consists of three application-independent components:
a GUI-component (UX), a graphics-component (GX) and a
communication- and system-controlling (supervisor)
component (SX). All these are written in C++. Existing
applications or modules (mainly in FORTRAN 77) act as
"server components" running within separate processes.

The connection between these server components and
UX/GX is established by so called agents. These are
application specific components written in C++.

The general structure of an application built around XX is
as foliows:

| <--> UX,GX
Main <--> SX |
| <--> agents <--> server components

< C++ >

<-- hybrid ---->

A user action (e.g. a mouse click at some button "I1SO")
results in a message sent by UX to the ISO-specific agent
which delegates the necessary computation task to the
relevant server component(s). In a similar way, agents
communicate among themselves by sending/receiving
messages, thus composing the product (e.g. some view)
as requested by the user and as corresponding to the
current stage of processing.

Message-passing is controlled by the module SX, and it is
performed by means provided by it. Message passing is
asynchronous, so that intensive computation will not block
the user-interface.

Message passing is built upon an Object Request Broker
(ORBY) which conforms to the CORBA 2.0 standard of the
Object Management Group (OMG), an orginazation who’s
aims are the standardization and adoption of object
technology (all leading companies have joined this group).
Using an ORB allows for distribution of components on
different machines in heterogeneous environments. The
commercially available ORB libraries ORBIX and
ORBELINE have been tested to build two versions of SX.

SX supervises the integrity of the running system and
takes care of proper handling of any failures in it. One of
its means to do so is to continuously supervise the proper
closing of message loops.

2.4 Graphical User Interface

On the one hand, in the spirit of object orientation, users
should communicate with the objects visible to them
directly, and this communication should reflect the state of
the objects. On the other hand, however, "development,
and sometimes fashion, do not stand still, ..., further

changes are following in rapid sequence, considering, e.g.,
the exploding importance of muitimedia technology. It is,
therefore, imperative to separate the GUI from the classes
to be controlled by it. There is an interface necessary,
somewhat similar to the resource file statements as
originally formulated by IBM for the PM. Interpreting such
statements, the [component UX] can compose the
graphical user interface to appear on the screen in using
the latest cross-platform development tools and libraries.
This way, the user interface can be kept to correspond,
though with severe compromise, to the fashion of the time"
[Mo92]. The most recent event to proove this point is the
appearence of WINDOWS 95 with a new GUI: such
changes should not enforce re-writing too much code in
large applications such as SCOP.

To create a solution for this dilemma took (and still takes),
indeed, a major sacrifice of capacity in research and in
programming by this institute. One is forced to be critical of
the current state of software technology not providing
proper solutions in this general-purpose realm. (A detailed
analysis of this dilemma, and an elegant concept for a
world-wide solution is given in [C095)). Standards for GUI
interfacing are plainly missing.

Here, a very short outlay of our solution follows, useful to
any thoughtful user of SCOP (or of any other system)
under XX:

- The Main module, when started by the user (or by
some other application) starts the supervisor
component (SX) of the XX frame, and transmits to it
the description of the main GUI window of the
application.

- 8X starts the user interface component UX, and
transfers to it the description of the main window.

- UX interprets (at run-time) the description of the main
window, displays it on the screen, and waits for user
action(s).

- According to the user actions, UX sends messages via
SX to the agents concerned (known to it from the
description it received from Main). If not yet running,
SX starts the corresponding agent(s), and passes the
message(s) to them.

- In many cases, agents are going to send to UX
descriptions for subLevels of user communication, e.g.
to collect parameter or other entries from the user,;
these are then interpreted and displayed by it. - In other
cases, the agents will compose services of the hybrid
server modules to products as requested by the user.
For this, SX will start the corresponding server
component(s), send it(them) some control information
(e.g. directives to existing SCOP modules, performing
the task in the background, running in batch mode).

- Graphics produced will be sent by the agent(s) to the
GX component of XX (see below). Error messages,
summaries etc. will be displayed by means provided by
UX.

The rest can be guessed from the above, we hope.

Specifications for the user interface are written as uxDL
("user interface Definition Language) statements. uxDL is

570

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996

specified and created for UX. It has a syntax similar to that
of C++. Semantically, it is kept as far as possible
independent of any current GUI in describing the
functionality requested in abstract terms such as 'Main’,
‘numVal’, 'analogVal', 'label’, ’stateSwitch’, '/RGB_DIGITAL’
etc. There is a series of operators provided for agents to
add or to subtract an element to/from the GUI, to modify it,
to make it accessible/nonaccessible, for inquiry, and so on.
uxDL statements carry detailed specifications for relative
and absolute object positioning, for events to cause
messages to be sent, a string for short help and an entry
in the help database, initial value(s) to be set, etc.

UX builds up a database of these specifications, and it
keeps it up-to-date with regard to agent and user actions.

The part of UX to display the GUI objects on the screen is
doing this via driver-objects dependent on some cross-
platform GUI library - at this point from Zinc Software Inc.
Displayed is a native GUI, i.e. one looking as OSF Motif,
as WINDOWS 95, or as OS/2 etc., depending on the
platform for the version of SCOP (or of some other
application created using XX).

There are two more specifics we would like to mention:
stateSwitches, and commandLine.

StateSwitches are GUI buttons specialized to switch object
states. There goes the saying that constructs not having
states are no objects. There is much truth to this: just
functions do not have states. On the contrary, objects - i.e.
data with corresponding methods (member functions) to
manipulate them - can be, e.g., 'not yet read in’, 'not yet
displayed’, "displayed’ etc. And the functionality inherent in
objects can be configured - 'set up’. With 0S/2 and with
WINDOWS 95, GUIs appeared on the market using this
type of user controls (there used to be others earlier,
naturally); they set the standards how to do it, and users
will get used to it: a right mouse click 'opens’ the object for
to be set up (i.e. for parameter specification), and different
other actions (carriage return on the active object, left
double mouse click) will activate’ the object according to
the current setup specifications. This second action can
switch just two states, and only in one direction: off-to-on.
This shortcomming is still rooting in procedural thinking:
they say they are "running the object" - a contradiction in
itself, not without humour. So we have been forced to
create the ’stateSwitch’, an element doing more than
"running the object": it is capable to swith back-and-fort
among object states via keyboard arrows, via pop-up
menue, of via hitting carriage return versus blank "over"
the current stateSwitch; and, naturally, stateSwitches are
capable of opening the object on right mouse-click or as
choice from the pop-up menue.

Shading understood as a large array of pixels (i.e. as data,
as object) yields a good example for switching states. This
complex object is controlled on the screen by a
stateSwitch. A right mouse click at it will open a 'subLevel’
(a window) with parameters for setting up the computation;
in most cases, however, the default setup will suffice, and
therefore, the opening (setup) action will not be needed.
The states allowed for this switch are: OFF, DISPLAYED,

571

FROZEN, EDIT (OFF and DISPLAYED are self-
explanatory; FROZEN means, that while editing the terrain
data by interactive graphics, the shading should remain
displayed but not re-computed on every change; EDIT
means that pixels of the shading can be interactively
identified and edited).

Concerning the commandLine: it yields the always-present
option of command entries. These are composed of
(shorthands) of the labels written onto/at the different
objects on the screen. To take the above example for
shading, the actions described there could be replaced by

typing
shd, zenDist 30, dsp;//or the similar

This allows for fast and special ways for expert users, for
batch capability, and for writing command procedures.

2.5 Graphics

The graphics component of XX: GX is realizing a subset of
CAD funcionality, and at the same time a superset of it
concerning the special needs of geocoded data. GX can
overlap, edit, and in certain special respects also process
both vector and raster (pixel) type data.

To facilitate fast identification of on-screen objects for
interactive graphics, GX is building up a database of its
own for the addresses and graphical characteristics of
these objects. Otherwise, data are managed by interface
objects - a solution coherent with strict distributed object
technology (see chapter 3). Interface objects are derived
from an abstract interface class specified by GX thus
declaring (and in certain aspects also defining) functionality
as needed by it - such as 'identify closest to (x,y)’, 'data
within area of interest, 'register/commit alteration by the
user’, etc. To perform such tasks, the interface object can
access, e.g., some database via any network - or, at the
other extreme of the scale, its own separate excerpt from
it. The most primitive examples of such databases are
intermediate ("ZWIFI’) files; for them, as far as possible,
the methods are written as declared in the abstract GX
interface class. Naturally, based on ZWIF| files this
solution is inefficient and not really capable of any active
graphics functionality. A much more versatile case is some
interface class based on TOPDB tables [Lo91]: here,
manysided selection operations, and efficient identification
are granted, thus allowing for editing the contents of tables
without being forced to duplicate them in another form.

GX has the capability to refresh screen graphics locally,
i.e. to re-draw only those screen regions effected by
changes. This is very important for following in real time
(or at least near-real time) any data editing actions by the
user: re-calculating and updating the currently active
screen contents (e.g. contour lines drawn over hill shading)
should be done only within the area affected by the
change(s). - To solve this, there is much to be done yet in
the (hybrid) SCOP server components.

Beyond interactive graphics, GX is responsible for plotter
and metafile related functionality.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXi, Part B4. Vienna 1996

3. INTEGRATION

The continuous struggle with (and often against) three or
four related software systems so to integrate the best of
their respective services into harmonous products is most
typical of to-days production. Rather than offering some
specialized service in perfect quality combined with flexible
means of integration, practically all systems try to augment
their central functionality by simple additions of their own -
additions too simple to be sufficient for professional
application.

To a considerable extent, this is also true of us. Realizing
this, the structure of XX itself, and of applications created
using it, are made such so to allow for manysided ways of
integration - the scale reaching from file interfaces at its
traditional extreme to interface objects at the other extreme
- that of distributed object technology.

3.1 Interface Objects

One of the most versatile means for interfacing different
components is via interface objects. This is true for
components integrated under XX, and also for components
of the software environment to be integrated into
production systems.

Objects are data bundled with the methods operating on
them. Interface objects are data to be exchanged bundled
with the methods to perform import and export of them. In
special cases further methods may be necessary such as
answering inquiries, performing changes etc. Interface
objects may be parts of a distributed object system, or
they may be implemented as client/server components; in
more traditional cases systems both on the import and on
the export side will link (parts of) their methods and share
or attach-and-release the corresponding database.

Methods on both the import and the export side will carry
driver-type functions capable of communicating with the
system on that side. These functions will be written using
means provided by the system - e.g. library functions to
access proprietary databases and/or to interpret internal
data representation.

3.2 Replacing Components by Standard Systems
Although not without considerable effort, it should be
realistic to re-write the driver-type functionalities in SX, UX
and/or GX so to arrive at a really seamless integration with
the most important standard systems (such as Arcinfo,
Intergraph MicroStation etc.). Re-writing the display-
drivers of UX with the corresponding display library of
another system will result in a user interface appearing to
the user as part of that system. In case of GX, replacing
the entire graphics functionality by that of another system
could be reached this way. Certain changes to the XX-
internal data communication and to its contents will also
become necessary for this level of integration.

For this way of integration, most of the important software
systems possess the necessary libraries to this date.
These are in most cases traditional (procedural) libraries,
sometimes with ‘“callback functions". Integration will
become much simpler with the standard systems and their
libraries becoming object oriented.

Replacing the database of SCOP (TOPDB) by other
DBMS systems is handled next (paragraph 3.3).

3.3 [TOPISQL

Internally, this version of SCOP is storing data on tables
managed by the topological and relational database
management system TOPDB [Lo91]. TOPDB is addressed
by statements formulated in TOPSQL - a subset of
standard SQL with additional topologic/geometric
datatypes and operators.

TOPSQL statements can be re-formulated in terms of
standard SQL, yielding a slow but functioning solution for
replacing TOPDB by standard RDBMSs.

Much simpler and much more efficient is this same way for
those RDBMSs capable to handle geometry and topology
in special ways. Recently, ORACLE corporation released
a special version of its RDBMS with such extensions.
ORACLE databases are widely used in our profession
anyway; this extension will, as we believe, strengthen
ORACLEs position. So it becomes specially simple for us
to create version(s) of SCOP based directly on ORACLE
databases.

3.4 Data Conversion

There remains to state that traditional data conversion will
long retain its importance in bridging the gap between
application systems - and therefore, we can and will not
neglect creating such "bridges".

4. REGIONS

4.1 (Irregular) Algorithm Tiling

Starting with this version of SCOP, the terrain (or other)
surface can be subdivided into regions (an expression
suggested by Prof. Ackermann), or - as referred to in
[M092] - into (irregular) algorithm tiles. There is more than
one reason for this new organization of surface
representation:

- different regions of the surface may be so
heterogenous in their character that they need at the
very least different parameters of representing them by
the same algorithm (this also includes such parameters
as grid-step or computing unit size); but more than this:

- regions with different character may need different
algorithms better suited to their specifics; this can
include special cases such as cement roads, areas to
be interpolated as (horizontal) planes or as river bases,
and so on;

- regions with different ways of data acquisition requiring
special interpolation algorithms - e.g. as contour lines
digitized, profiling or grid measurements, etc.;

- introducing computationally intensive algorithms such
as the ones capable of true 3D is hardly feasible for
large models; also, this is only necessary in specific
areas. These can be declared then as regions;

- providing for a much more flexible switching among
different (competing) algorithms than it would be
possible for the entire model - e.g. for purposes of
experimentation by the user ("what-if analysis").

572

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996

Fig 1. SCOP DTM under "XX’: main window, parameter window, window to control the function-model Slope

573

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996

Regions are objects "logically encapsulating data ..., local
co-ordinate systems, ... interpolation algorithms, private
surface representation (e.g. hexagonal tiling, or analytical
forms), functions to service inquiries concerning this
surface (elevation, components of f and ' at a given
location, the isoline at a given elevation, ray tracing, etc.),
and in some cases even hardware. They should employ
parallelity in their co-operation ... [M092].

Realized is: the organization for regions, and creating
separate SCOP DTM structures per region ("RDH").

4.2 (3D and Special) Enclaves

These are small regions with structures not necessarily
belonging to the terrain surface as represented on
topographic maps. Such structures are buildings, bridges,
but details such as roads, sport fields etc. can also be
classified as such. Small enclaves can just be neglected in
certain cases (e.g. in creating maps in scales too small for
representing them). If not small enough, the often just
abstract topographic surface must also be specified for
enclaves. Entire city models may be considered to be
special and atypical enclaves.

There are no enclaves realized at this point.

5. PROCESSING
5.1 Interactive Mode
The aim of this description is to give the reader an idea of
controlling SCOP under XX. This is a pre-alpha version, so
any detail can change; the general idea remains proper,
however.

Fig. 1 shows a screen with the main window SCOP DTM,
and two subWindows: ISO parameters, and Slope. On the
left side of the main window, a series of stateSwitches is
there to control Data, Views, and SURFACES. Clicking at
the stateSwitch ’iso’ with the right mouse button will open
the subWindow for setting up parameters. There, interval
and/or levels can be specified. A left click at the button
"Update’ will result in taking over the values specified. It
does not result in displaying isolines on the screen.

To display contourlines (isolines), the state of the switch
has to be raised. This is done by left-clicking the
stateSwitch, and hitting the right arrow or carriage return
on the keyboard. The small bar on the stateSwitch will light
up and blink in yellow - the blinking indicating the process
running. The iso agent will be sent a message, it will
request the contour lines at the agent for algorithm tiling. It
then will initiate the interpolation for all regions within the
area of interest (the area represented on the screen), then
it will stat SCOP.ISO to interpolate the contour lines.
When all this is done, the iso agent will send the (address
of the) interface object with the contours to GX. GX will
display the contours. Finally, the iso agent will send a
ready message to UX; the stateSwitch iso will sease
blinking, the yellow light remains to indicate the state
"displayed’ for isolines.

On the right side of the SCOP DTM window there are
different buttons. 'What if’ should serve to create one or

more copies of the DTM so to experiment and to compare
results. Explore, when ’‘opened’, will present different
means for "surface analysis and exploration”, including,
e.g., SCOP.SLOPE. Applying the latter will create a slope
model; when created, it will appear on the left side under
SURFACES (stateSwitch ’'Slope’; when opened, the
vertical window on the right side appears, showing for this
model the same stateSwitches seen on the left side of the
main window).

The button 'Map’ under 'WINDOWS’ will open a graphics
window for editing output graphics.

Placing the mouse pointer over any symbol will display a
short help string in the help bar along the lower edge of
the corresponding window. F1 will yield detailed help.

For expert users, there is also a commandLine available.
It controls all levels (main and subWindows) of processing.
With commands as suited for it, command procedures can
be written.

5.2 Compatibility

This coming version of SCOP integrates the modules of
the most recent SCOP version as server components.
They are capable of running in exactly the same
“traditional" ways users of SCOP are accustomed to.

6. CONCLUSION
The main improvements in this presented version of SCOP
are its openness toward future development and toward
integration. Only in the second line would we mention the
great improvement in processing control, and the
introduction of regions.

At least half of the tasks formulated in [M0o92] remain
open. There is much work underway. Closer to become
applicable are:

- line networking (break lines, region limits)

- true 3D surface interpolation and representation

- intelligent overlapping/mixing of related views

- raster tools (a related reference: [Ri92])

REFERENCES

[Co95] Cotter, S. Inside Taligent Technology. Addison-
Wesley, 1995. ISBN 0-201-40970-4.

[Ho96] Hochstéger, F. Software for Managing Country-
Wide Digital Elevation Data. International Archives of
Photogrammetry and Remote Sensing, Commission |V,
Vienna, 1996.

[Lo91] Loitsch, H., Molnar, L. A Relational Database
Management System with Topological Elements and
Topological Operators. Proceedings Spatial Data 2000,
Dept. of Photogrammetry and Surveying, University
College London.

[M092] Molnar, L. Principles For a New Edition of the
Digital Elevation Modeling System SCOP. In: International
Archives of Photogrammetry and Remote Sensing,
Commission 1V, Washington, D.C., 1992.

[Ri92] Rieger, W., Automated River Line and Catchment
Area Extraction from DTM Data. Presented paper, ISPRS
Congress, Washington, D.C., 1992.

574

international Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B4. Vienna 1996

