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ABSTRACT:

Multiple or multi-scale representation is an issue of growing interest and importance in GIS. It deals with the representation
of different spatial entities that describe the same physical objects in one common information system. The need for such
a representation - instead of a description of objects on the most detailed level of resolution - results from various reasons.
The main reason being the fact that spatial phenomena usually only occur on a certain scale - which is not necessarily the
most detailed one. Changes in scale lead not only to changes in geometry, but also in topology and semantic. Multiple
representations also result from different interpretations of the given reality according to scale or thematic emphasis, and also
due to the date of capture. Since geographical phenomena have multiscale aspects, they should also be represented as such
- and not only at one level. This then allows for an inspection of spatial data on various levels of detail - logically zooming in
and out. Multiple representation affects data modelling and data capture, integration, storage, analysis and presentation, i.e.
all parts of a GIS. Whereas multiple representation first was considered to be a mere cartographic problem, it is getting more
and more obvious that it is an important issue in GIS as well.

The paper first introduces into the problem of multiple representation and tries to clarify the terms used. The main emphasis is
put on possible realizations of such a representation. This presumes to have a means to generate different levels of detail and
provide links between these representations. The paper finally presents a concept for the transition between different scales
based on an object-oriented representation. In order to go from one scale to the next, certain rules are required. These rules
are partly given a priori, partly they are acquired automatically from given data sets with techniques from Machine Learning.
The concept is a extension of a program developed for the derivation of object models for map and image interpretation.

1 INTRODUCTION AND OVERVIEW cartography ever since: the national mapping agencies store
multiple scale versions of data. It is only recently that there
is a consensus in GIS research community that apart from
graphics-oriented generalization there is a need for model
generalization in a database. Thus also in spatial databases
generalization operations have to be applied in order to result
in a higher level view of the same phenomena. In this way the
understanding and applicability of the data is improved.

Geographic phenomena are highly scale dependent. This
fact is obvious in our everyday life, consider e.g. our in-
trinsic rules of stepping back to get an overview of a given
scene, and getting closer in order to distinguish details. Each
phenomenon has its corresponding level, where it is best
understood: e.g. a sentence cannot be understood on the
level of letters. Even individual sentences need the higher 1.1
order structuring of sections, captions and a table of con- ’
tents. Such a hierarchical multi-scale representation is used

to guide the paths of perception - from coarse to fine. The  The problem of multiple representation is straightforward and
same holds for information represented in a data base. Usu-  well known in the domain of cartographic generalization. Mul-
ally the information is captured for a certain purpose - which  tiscale representation has however many other aspects, just
often determines the data model. Thus e.g. in orderto inves-  to name a few (see also e.g. [Weibel 1995]):

tigate Waldsterben, individual trees have to be modelled and
captured, for landuse classification on a general level how-
ever there is no need to identify a single tree, but the forest
area as a whole is described.

Implications and Related Topics

> Multiscale representation allows for a controlled data
reduction concerning spatial, semantic and/or time di-
mension. In this way data abstraction leads to a re-

The perception of our surrounding varies with scale. Both duction of spatial and semantic resolution and to data
type and appearance of objects differ when getting closer or bases at multiple levels of accuracy and resolution.
going away, resp. A given phenomenon thus is not fixed, This in turn has the effect of a reduction of storage
but scale dependent. Dealing with this fact is an issue in space and also of a speed-up of calculations.
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> Going up in the hierarchy, a reduction of unnecessary
details and at the same time an emphasis of the impor-
tant ones is achieved. The different levels of detail may
reveal essential information for different users.

A severe problemin GIS is the fusion of data originating
from different sources. Data can be captured based on
different data models and also with different data qual-
ity. The data sets are similar in the sense that they are
captured at approximately the same scale. In the con-
text of the so-called conflation [Walter & Fritsch 1995]
map matching techniques are applied to determine cor-
responding parts between the data. These methods
also have to allow for partial matches. This problem
especially occurs when thematic data has to be inte-
grated into general topographic data sets.

In image analysis multiscale representation is also an
important issue. In order to get approximate values
for interpretation or matching, usually coarse-to-fine-
approaches are selected, using image pyramids (e.g.
[Hahn 1989]) but also a series of symbolic descriptions
([Bobick & Bolles 1989)).

In GIS the following muiltiple representation problems can be
distinguished, which are visualized with topographic data of
Germany:

GDF > DLM25 Thematic Data
DLM200
DLM1000 Map 1:1iMio

Figure 1: Examples for multiple representation problems, vi-
sualized with topographic data available in Germany: ATKIS
DLM’s (Autoritative Topographic-Cartographic information
System) at three different resolutions, GDF (Geographic Data
File: standardized data exchange format in Europe for road
traffic data).

model generalization: a bottom-up aggregation (general-
ization) of objects going from one scale to the next (e.g.
transition from DLM25 to DLM200 (Digital Landscape
Model 1:25 000 and 1:200 000, resp.)),

cartographic generalization: generalization going from a
data base representation to a graphical representa-
tion (e.g. cartographic presentation of contents of
DLM1000 in a map of scale 1:1Mio),

conflation: matching of data sets of different origin, but de-
scribing the same physical reality (e.g. fusion of GDF
road data and ATKIS road information).
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Whereas the cartographic generalization can be considered
as a problem of high complexity (especially the problem of
displacement), solutions for the model generalization seem
to be closer at hand. The question even rises, if cartographic
generalization will ever be achieved - or if it should rely on
semi-automatic processes (e.g. with commercial products
like MapGeneralizer from Intergraph). Thus the proposed ap-
proach refers to the model generalization only.

The term generalization is normally used for cartographic
generalization. There it implicates, that the generalized ver-
sion of an object completely replaces the original one, since
it is no longer needed after visualization. Data abstraction or
model generalization however results in a a hierarchy of ob-
jects - where all manifestations exist side by side with equal
rights. In the sequel generalization will however be used to
describe both types of data abstraction.

1.2 Possible Realizations

A spatial database comprising multiple levels of detail can be
organized in various ways. It can be realized by having a sin-
gle most detailed representation in conjunction with tools to
derive a series of other layers of different scales. The other
possibility is to keep multiple representations of the objects
on different pre-given levels of detail in the system. The ad-
vantage of the first alternative is that only one data set has to
be stored, which can be managed and accessed consistently.
In the second case redundant data has to be dealt with. On
the other hand the time for the calculation of data at a certain
scale has to be taken into account. Also - to date - no efficient
generalization algorithms are available. Furthermore there is
no tool to propagate updates through a series of derived data
sets - which is an important issue for database revision.

Ideally a GIS should comprise all possible information - ev-
ery application then should be able to deduce the problem
specific information from it. This presumes to have rules for
the transition of representations of objects between different
levels of detail. Another still unsolved problem is the selec-
tion of the optimal scale for a given task. Thus the following
questions arise:

> Which objects have to be represented in a certain
level ?

> How are these objects represented (point, symbol, line,
area,...)"?

> When do the objects disappear and how ?

In general, the national mapping agencies have already an-
swered the first question. E.g. the surveying authorities in
Germany have detailed descriptions of the objects to be rep-
resented in a map of a certain scale (ATKIS ([Harbeck 1995])
- a general framework for a digital representation of the map
data ). These descriptions, so-called object catalogues, also
include the way the objects should be captured, their ac-
curacy and representation in terms of geometric primitives
(point, line, polygon). They are however only given for cer-
tain discrete scales (scales 1:25 000, 1:200 000, 1:1 Mio). In
order to generalize to other intermediate scales, such cata-
logues have to be established accordingly. There is a great
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demand for intermediate representations: especially for en-
vironmental planning a scale 1:50 000 is very favourable
([Winkelhausen 1995]).

Even when the representation of the objects on distinct lev-
els is given, the question arising immediately is how to de-
fine the transitions from one scale to the next. For small
changes in scale smoothing operation can be applied (cf.
processes in digital image processing: gaussian smoothing
([Sester 1990]) or morphological operations). At a certain
level however, there are abrupt changes in the representa-
tion which cannot be reflected by elementary processes, but
have to be represented by a set of rules (e.g. transition from
geometric to symbolic representation).

1.3 Sketch of proposed approach

The idea of this contribution is to use an object oriented
representation in conjunction with techniques from Machine
Learning. The elementary representation of the objects of
the catalogue is straightforward. The object-class hierarchy
can be transferred directly. Each object has a set of methods,
which define its behaviour, namely the range of its possible
actions. Among these, there are e.g. methods for represen-
tation. In this way also methods for generalization can be
implemented. The question is however how to define such
methods. E.g. the aggregation of a set of houses can de-
pend on the distance of the individual houses, on the fact
that a street is nearby, .... Which factors are relevant is not
easy to determine. One possibility is to use knowledge ac-
quisition techniques to determine generalization rules. Tra-
ditionally Knowledge Acquisition this is done by interviewing
experts [Weibel, Keller & Reichenbacher 1995]. This process
can be automated by methods from Machine Learning. The
technique of “Learning from Examples” e.g. uses a set of
examples to derive a general rule which describes the struc-
ture inherent in the examples. Ideally such techniques are
applied when there is no explicit knowledge about the given
fact available, or no rules of thumb are known. The examples
to feed the learning algorithms can be taken from existing
maps. In the learning procedure, e.g. a set of houses can be
given as example, whereas the system then has to derive all
the relevant objects, the relations between them and thus the
criteria when and how to aggregate the buildings to a larger
complex.

Generalization highly depends on relations between objects,
thus the problem is to define such relations. The paper
first presents an approach of supervised learning of object
models in terms of an object hierarchy (including attributes
and relations of object classes, and corresponding methods)
[Sester 1995], which was developed for the application in im-
age and map interpretation. Starting from this approach,
a transfer to the generalization in multiple representation is
straightforward - since the object models and the methods
needed are similar. Thus a concept for learning generaliza-
tion rules is presented. In the approach the learning program
ID3 [Quinlan 1986] is applied.
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2 GENERALIZATION OPERATIONS AND
DATA STRUCTURES

Generalization bases on distinct operations, like selection, fil-
tering, smoothing, abstraction, aggregation, collapse, scal-
ing and displacement (cf. [Miller, Weibel, Lagrange &
Salge 1995], [Beard & Mackaness 1991)).

These operations operate on dedicated data structures,
which include all the details necessary for the generaliza-
tion. This concerns especially the representation of topol-
ogy (neighborhood, relations, adjacency) - a fact which is
obvious for the displacement operator. To this end several
data structures are proposed, which can be characterized as
raster structures :

> A triangulation of the given data set ([Bundy, Jones &
Furse 1995], [Ruas & Lagrange 1995]) directly reveals
the neighborhood of the objects.

> Another approach applies a raster-vector transforma-
tion. In a so-called displacement mountain, the im-
portance of the object, the range and also the direc-
tion of displacement can be coded in the gray-values
[Jager 1990].

These representations however take only geometric neigh-
borhood into consideration. Semantic proximity or adjacency
over other objects is not considered. For some applications
however different types of neighborhood are required.

Thus another structure can be used, namely an object ori-
ented approach, where the object-specific neighborhood is
explicitly stored for each object (or object class).

3 APPROACHES FOR TRANSITION
BETWEEN MULTIPLE LEVELS OF
DETAIL

A well known and popular approach for generalization of
line structures is the Douglas-Peucker-Algorithm. Line data
structures like the strip-tree or binary line generalization tree
(BLG) base on this type of algorithm and guarantee quick ac-
cess to line objects on various levels of detail.

Concerning generalization of areal features there is an ap-
proach by van Oosterom [1995]. He presents the concept
for map generalization on-the-fly. The aim of his approach
is the derivation of a temporary generalization (mainly for the
purpose of screen display), thus not the creation of a sec-
ond, redundant dataset. In order to get quick responses he
relies on so-called reactive data structures (i.e. geometric
data structure with detail levels). As a data structure for the
area partitioning process, he introduces the GAP (general-
ized area partitioning) tree. Area partitioning starts from the
assumption, that each pointin the 2D domain belongs exactly
to one of the areas, thus there are no gaps or overlaps.

Generalization of an areal object can on one hand be re-
duced to the generalization of its constituent polygon lines.
This however can result in overlaps or gaps when no topo-
logical data structure is used. The alternative is to select ob-
jects what are to be deleted. In order to prevent having gaps,
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the now obsolete areas have to be merged to neighboring
objects. The author introduces the concept of importance to
determine, which objects to drop and how to aggregate them.
The importance of an object is defined as a function of its size
and type. Thus the aggregation relies on spatial relationships
(proximity) and importance of the areal objects. In this way a
successive selection and aggregation of the objects can be
achieved which finally results in a object hierarchy. The most
general (important) object is on the top and the other objects
reside in the corresponding levels of the hierarchy. Opera-
tions defined on the tree data structure are the calculation of
the area and perimeter of any polygon in the hierarchy. This
approach proves to be very fast - which was the primary fo-
cus it was developed for.

The fact that only one (quite simple) rule is responsible for the
aggregation of the areas is considered a drawback. Also the
notion of importance seems to depend on certain parameters
which have to be tuned in advance.

The concept presented in this contribution aims at a deriva-
tion of the relevant rules and parameters directly from the
data - and thus independent of the user. He only is responsi-
ble for the control and for the provision of meaningful exam-
ples.

4 LEARNING RULES FOR RELATIONS

The approach bases on an object-oriented system named
FLAVOURS. FLAVOURS is embedded in a programming en-
vironment called POP11 (cf. [Barrett, Ramsay & Sloman
1985]) and is an implementation of the MIT Flavors package.
POP11 is interpreter-based which allows for a self-generation
of program-code. This feature is exploited to a great extent in
the prototype learning program, since the rules learned can
immediately be applied to the data and thus verified.

The basic assumption is that the rules are either complicated
or not easily formulated. Furthermore, deriving rules from the
data is easier and more reliable. Still the teacher is there to
finally verify and refuse or modify the rules if necessary.

4.1 Learning Structural Object Models

Image and map interpretation needs models in order to in-
terpret the visual information. The problem is to describe
appropriate object models - including objects attributes and
their relations. Sester {1995] presents an approach of using
Machine Learning techniques to derive a model description
from given examples. Learning techniques make use of the
fact that examples can be named and pointed at quite easily,
however it is often not known what the classifying attributes
are. So it is left to the learning procedure to determine them.

In order to define the learning task, the objects and their pos-
sible relations have to be identified. The actual manifesta-
tions of these relations will be learned based on the system
“vocabulary”, namely the properties and methods of the ob-
jects and relations, which is provided. These properties in-
clude geometric and topologic functionalities (e.g. size, form,
adjacency, relative position, ...). The teacher specifies the
concepts to be learned and selects the examples. The task

IThe figure also visualizes the learning environment.
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of the learning system is to determine the relevant properties
for a given concept and also their values.

In order to solve the task of interpreting given visual infor-
mation, the system starts with an identification of elementary
objects (namely polygons). For the further classification of
these objects, the system acquires adequate criteria in the
subsequent learning step. The basic idea of the system is
to control the process directly by the objects: each objects
checks, which methods it has available and whether they
can be applied to the given data - namely to the other ob-
jects. After all objects have applied their methods and no
more changes occur, the teacher can take over the control
by starting the learning procedure to acquire new objects or
a new object functionality. This in turn can extend the object
methods, which they apply to the data. Also there is the pos-
sibility of correcting and extending an automatically derived
description.

As an illustrative example consider the situation in the picture
on the right hand side of Figure 2!. Humans can immediately
recognize it as an extract of a map with fields and traffic ob-
jects. The system however in the first step distinguishes lines
and constructs polygons from it.

(B e R s

[ERET T GeTect Concept [ LTI oal)

of Jelgtion pew,Clos
- ald

Figure 2: Learning of concepts traffic and field

In order to learn discriminating criteria for individual object
classes the teacher points at different objects and gives a
classification. This leads to an automatic creation of new ob-
ject classes. The characterizing and classifying attributes of
the objects are derived by ID3. Thus after the learning step,
the systems knowledge has been extended: now the poly-
gons have a new method to apply, namely to differentiate into
the new object classes. A successive application of this pro-
cedure leads to the recognition of the objects given in Figure
3 (left), namely fields (feld), streets (strasse) and cycle tracks
(radweg).

Learning relations allows for the discrimination of so-called
part-of-relations and associations. In order to learn relations,
two objects are pointed at, and the teacher indicates whether
the relation is valid for these objects or not.

A part-of-relation results in the aggregation of objects that
share the learned relation. Associations have the effect of in-
cluding more context into the object description. An example

for the learning of such a relation is the association between
a cycle track and a neighboring street. The teacher points
at examples and counter examples for the relation which are

stored in an attribute-value list. The first line is a comment
line describing the concept to be learned, followed by the at-

tributes; each example with its corresponding attribute values
is stored in the subsequent lists.
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% street_cycle_track connection inside encloses are_parallel

are_orthogonal common_ell common_tee common_stem
common_£frk common_arw common_njnb size_diff
distance_2 left_position top_position common_sides
same_polytyp %

[positiv yes no no yes no 1 2 1 0 0 0 2586.363894 43.73397
left_of top_of 1.03 same_poly] ;;; [radwegb strasse3]
[positiv yes no no yes no 1 2 0 0 0 0 2940.824027 10.26592
left_of under 5.63 same_poly ] ;;; [radweg3 strasse3]
[negativ yes no no no yes 0 2 1 0 0 0 1411.443836 76.430477

right_of top_of 0.04 diff_poly ] ;;; [radweg3 strasse2]

From the given examples the following function (decision
tree) for the relation is automatically gained by 1D32:

vars street_cycle_track ;

define street_cycle_track (areal,area2) -> klasse ;
vars klasse , areal,areal ;
undef -> klasse;

if (are_parallel(areal,area2) ->> val) == "yes" then
if ( connection (areal,area2) ->> val) == "yes" then
’positiv’ -> klasse;
elseif (connection(areal,area2) =->> val) == "no" then
‘negativ’ -> klasse;
endif;
elseif (are_parallel(areal,area2) =>> val) == "no" then
’negativ’ -> klasse;
endif;
enddefine;

This function characterizes that for a neighborhood of streets
and cycle tracks a check has to be made as to whether they
are parallel and connected - which might be obvious after
reading it. Merely inventing such a rule, one might easily
have thought of paralielity alone and have forgotten to check
for a connection. In the same way, aggregations of objects
can be interactively and iteratively gained. E.g. the fact that
adjacent fields can be aggregated is learned as a part-of-
relation.

Figure 3 (left) visualizes the association street-cycle_track in
dotted lines and the part-of-relation field-field in solid lines.
The final result - after successive application of the field-field
relation and also the street-street relation - is shown on the
right hand side of Figure 3.

S i feld 1l Jﬁd e
. |————tacess
G geawead |\ | | Swag|———raewend
e felds ::mss | shrosseb
[ stcssﬂd____fpid; o feldg feldld  rhdive
Le!ds telds

Figure 3: Association street-cycle_track in dotted lines; part-
of-relation field-field in solid lines (left); Final result of inter-
pretation (right)

So in the end a complete scene description evolves, together
with a corresponding model characterizing traffic and field ob-
jects. The derived model is given in Figure 4.

field1 field13
Prop. . | Prop.

Meth, Meth,

{ stroet1 | stroet6 cycle tr. cycle tr.
Prop. Prop. Prop. Prop.
Meth. | Meth, Meth. Math.

Figure 4: Derived scene model: objects and relations

4.2 Concept for Learning Multiple Representation
Rules

The learning facility can easily be applied in multiple repre-
sentation on two methods:

Learning rules for object presence: Such a rule deter-
mines when and if an object is present on a certain
level of detail. This can be achieved by pointing at ob-
jects and classifying whether the object is existent in
the following scale or not. The system then generates
a decision tree that determines which attributes are re-
sponsible for this representation (e.g. size, form, type).

Learning aggregation rules: In the spirit of van Oosterom
[1995] a successive aggregation of the objects has to
be performed when going from one scale to the next.
In contrast to his method however, the rules for aggre-
gation are not fixed in terms of importance parameters,
but are learned directly from the given data set. The ex-
pectation is that such rules better reflect the underlying
structure in the data. In this way - analogous to the ag-
gregation of fields and streets in the previous example
- higher level methods for the generalization of objects
can be derived.

4.3 Similarities and Differences between the two
Problems

Between the problems model acquisition and multiple rep-
resentation the following similarities and differences can be
found:

Similarities: Both problem domains base on complex object
hierarchies. The relations between the individual ob-
jects (or object classes) are however object- and task
dependent. The system allows to identify these rela-
tions and learn corresponding rules depending on the
attributes.

2This is the automatically derived decision tree in the language POP11. The function is composed of the definition of the function variable
street_cycle_track and the function itself, enclosed by define and enddefine
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Differences: In the case of model generalization, the iden-
tification of the objects is already given (e.g. buildings,
parcels of land, streets). Thus the learning starts al-
ready with objects instead of mere polygons. However
in the course of the learning it might become necessary
to create new or intermediate objects. In this way the
interpretation capability can be exploited as well.

5 SUMMARY AND CONCLUSION

After an introduction in the importance of multiple represen-
tations in GIS, some of the problems when generating such
descriptions were presented. Special emphasis was put on
the transition between different levels of detail. This has been
identified as a learning problem in multiple representation.

Starting from a similar approach in image interpretation, a
concept for the learning of generalization rules was pre-
sented. This transfer is possible since both domains base on
a description of objects in terms of an object-class hierarchy
with complex object relations. Depending on the type of ob-
ject and its methods, different actions can take place. These
actions in the first case help to identify and interpret the ob-
jects, in the second case they are applied for the derivation
of other levels of detail.
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