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ABSTRACT

The paper evaluates the performance of using both a neural network and a rule-base in developing a fully integrated
geo-referencing routine. Aspects of hybrid neural network performance are reviewed, focussing on improved training
times, improved geo-referencing precisions and overcoming convergence problems associated with stand-alone neural

network processing models.

1. INTRODUCTION

A hybrid neural network is a network whose architecture
consists of two or more separate processing structures.
Hybrid neural networks consist of a neural network
augmented with another processing structure (rule-base)
which can be included within the system by running
parallel to it, or in series with it. In addition to providing a
more precise geo-referencing system, the hybrid
architecture is highly parallel and ideally suited to paraliel
processing producing a  highly effective and
computationally efficient system.

1.1 Hybrid Neural Networks

The hybrid network technique adopted for this study is
similar to that presented by Bengio et al. (1992). Hidden
Markov Models have a proven success in the modelling
of the temporal structure of speech, whereas the artificial
neural network (and in particular the multi-layer
perceptron) has a proven success in continuous function
approximation. The system used by Bengio et al. (ibid)
combines the advantages of the two independent
techniques. A similar approach was used by Bumiston
(1994), consisting of a simple rule-based model to
approximate the speech pattern. The multi-layer
perceptron neural network was then used to identify and
model the peculiarities and fine detail of the speech. This
form of network construction removes the requirement for
the network to learn the complete function. This allows
the network to focus its ability on recognising the patterns
which exist in the difference between the rule-based
estimate and the true geographic coordinates of the
training patterns. This is achieved in a learing process
similar to that used in conventional neural network
training algorithms (e.g, back-error propagation). The
integration method adopted was through the use of a
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rule-base to assist the removal of the majority of the
systematic errors within the geo-referencing process
(Dumville, 1995).

1.2 The Rule Base

The Platform Trajectory Model combines satellite
ephemeral information with ground control to create the
geo-referencing model. Unlike popular geometric
rectification algorithms the Platform Trajectory Model only
requires a single ground control point (GCP). This point is
used to anchor the image to the cartesian reference
system to be used within the geo-referencing routine. The
satellite ephemeris acts as the control for the orientation
of the image and the timing information is used for the
scaling of the image pixels. The ephemeral and timing
information is made available within the header files of
the satellite image.

2. THE TEST IMAGE

A Synthetic Aperture Radar (SAR) image of the North of
Scotland from the European Remote Sensing Satellite,
ERS-1, was used in this study. The image contains 8000
by 8000 pixels corresponding to a ground area of 100 km
by 100 km. This area was selected as a test site due to
the availability of the appropriate satellite imagery and the
mapping of the region.

A relative GPS ground survey was carried to obtain
ground control for geo-referencing the image. A set of
eleven control points were observed after by identification
of suitable features on the image (Putter, 1993).
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3. NEURAL NETWORKS

The task facing the neural network is to perform the
multiple transformation stages of the geometric
rectification process. Firstly, a pixel's image coordinates
need to be geo-referenced into a 3-dimensional geodetic
coordinate system, from where they can be converted to
local geodetic coordinates. Subsequently, the local
ellipsoidal coordinates require projecting as grid
coordinates. This form of direct rectification produces
projection coordinates for each pixel in the image (Figure
1). This can often result in pixels being overlaid or missed
in a rectified image and therefore requires a post-
processing filter to be employed on the rectified image to
solve these problems.

Geo-referencing Using Neural Networks

Figure 1

4. HYBRID NETWORKS

A hybrid network is required to learn a different mapping
function to that learnt by the stand-alone neural network.
From the exterior of a hybrid network there is no evident
change of architecture from that of a stand alone neural
network. The input and output are the same. However,
internally the architecture of the two differ significantly.
The neural network module of the hybrid network is used
to provide corrections to the estimated geo-referenced
coordinates produced from the rule-base that operates in
parallel to the neural network module. The neural network
performs a different task to that previously mentioned in
§2, a different geo-referencing function is required, and
therefore a new network topology is required.

Size of Hidden Layer (processing units)

Geo-referencing Error (m)

20 25 30 3 'Y 45 50

Number of iterations

Figure 2 Hidden Layer Size Test Results

Tests were performed to decide upon the new topology
and values for the new network parameters within the
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neural network module of the hybrid model. This included
tests for the number of hidden layer units, the learning
term and the momentum rate.

Figure 2 shows the effect of altering the number of the
hidden layer processing units. From the figure it is evident
that all five curves are highly correlated, possessing very
similar characteristics. What is apparent from the figure is
that the final result is approximately the same for all
curves independent of the number of hidden layer units.
This simple test demonstrates that a hybrid network, used
for image geo-referencing, requires fewer processing
units than a stand-alone network. This property of hybrid
networks was also concluded by Bumiston (1994), for the
use of hybrid networks in speech approximation.

For geo-referencing tasks, the reduced number of hidden
layer units can be attributed. to the fact that the major
rectification manoeuvres are performed by the rule-base
and not the neural network module as was the case in §2.

Other network design tests were performed using the
ERS-1 SAR image. The topology which provided the best
results, in the design phase, was subsequently kept
constant for all of the operational tests. The empirical
tests for determining values of the learning term and the
momentum rate yielded figures of 0.1 and 05
respectively. The design tests resulted in the network
topology as illustrated in Figure 3, with the neual network
module assembled from a single hidden layer, containing
6 hidden layer processing units.

Input Signals

Figure 3 Hybrid Network Topology

The final hybrid network had the same neural topology as
used for the stand-alone neural network but possessed
different values for the learning term and the momentum
rate.
4.1 Hybrid Network Geo-referencing

This section presents the results using the hybrid neural
network to determine its learning ability, its performance
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ability and its merits compared to performing similar tasks
using a stand-alone neural network model.

Table 1 presents results demonstrating the effect of
altering the number of control points used in the hybrid

network's training phase, on the geo-referencing

precision.

GCPs Control Points (m) Check Points (m)

Used > dE = dN RMSE z dE Z dN RMSE
1 0 0 0 20491 | 23805 2861
2 -1 0 3 -965 1338 247
3 18 -14 39 -276 -216 104
4 37 46 61 -50 50 71
5 24 42 61 132 67 73
6 55 150 67 -94 65 69
7 -121 -68 64 -63 8 73
8 -180 -129 65 -140 -13 77
9 81 2 59 -152 11 77
10 70 -232 61 -31 -10 32
11 212 -71 58

Table 1 Hybrid Network Geo-referencing Results

Table 1 indicates that using only one GCP, for the geo-
referencing process, there is insufficient information
present in the single training pattern for the network to
establish a link between the rule-base estimate and the
true location of the training pattern. The introduction of a
second GCP into the training process produces a
significant improvement in the network's performance.
This extra GCP enables the link to be identified and the
hybrid network begins to function as an integrated
system. Through the addition of more control information,
the geo-referencing precision improves but reaches a
threshold when using between 4 and 9 control points
(RMSE ranges from 59 m to 67 m for the Control Points
and ranges from 69 m to 77 m for the Check Points). The
process does not improve or severely degrade when
using 4, 5, 6, 7, 8 or 9, demonstrating that the geo-
referencing function can be using fewer control points
than would be required by a stand alone neural network.

The RMSE fit to the control points in the final two tests
(i.e., using 10 and 11 GCPs) are in the same threshold
region (~60 m) as in the previous tests. However, as little
check point information is available for analysis these
results should not be considered for performance
evaluation, though they can be used in assessing the
hybrid network's learning ability.

5. SUMMARY OF RESULTS
There follows a summary of the results achieved using

the neural network approach (Figure 4), the rule-base
approach (Figure 5) and the integrated hybrid network
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approach (Figure 6). The rule-base used for the tests in
the hybrid approach was that of the platform trajectory
model. Figure 4 presents the direction and magnitude of
the geo-referencing RMSE residual vectors within the
neural network process from a test that used 5 GCPs for
training 6 check points for recall. The direction of the
residual vectors associated with the GCPs appear
unrelated to one another, with no distinguishable pattern.
What is apparent, however, is the trend which exists in
the residual vectors associated with the 6 check points.
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Figure 4 Residuals (neural network)
residual vectors @ scale 1:50

Figure 5 shows an example of the geo-referencing
residuals present in the Platform Trajectory Model (PTM)
approach to geo-referencing Earth Observation imagery.
The image was geo-referenced using a single GCP.
There is a clear trend in the directions of the residuals, in
the Easterly direction. This could be attributed to; pixel
dimensioning, reduction to the ellipsoid, Earth rotation or
atmospheric effects, all of which effect the image in an
along-track (Easterly) direction. Another distinctive
feature within the figure is the size of the residuals in the
bottom-right of the image as compared to those towards
the top of the image. The larger residuals can be
attributed to the propagation effects of the Platform
Trajectory Model.
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Figure 5 Residuals (rule base)
residual vectors @ scale 1:50

Figure 6 illustrates the performance of the hybrid network
in the geo-referencing role. The plot contains the results
of using 5 GCPs and 6 check points. It can be seen from
Figure 6 that the resident systematic trends which were
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present in Figure 4 have now been removed. There are
no visible patterns within the directions of the residual
vectors. The RMSE for the control points is 61 metres
and the RMSE for the check points is 73 metres. These
values can be compared to those from Figure 4 of 156 m
and 160 m for the control and check points respectively.
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Figure 6 Residuals (hybrid network)
residual vectors @ scale 1:50

5.1 Learning versus Recall for Hybrid Networks

Figure 7 presents three curves illustrating the nature of
how the geo-referencing error decreases with the amount
of training. The first curve shows the progress in network
learning using 4 control points for the neural network
training. This curve starts with the largest error, however
after 20 000 iterations the error has reduced to a similar
value as the curve displaying the check point residual
RMSE using 7 check points.
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Figure 7 Learning and Recall Curves for Hybrid
Network

The check point curve is indicative of the network's ability
to recall the geo-referencing function should the training
process be halted. It represents the hybrid network's
ability to approximate the geo-referencing function up to
50 000 training iterations. The graph closely resembles
that of the training curve. Initially, the recall curve
produces less error than the training curve that uses the
control points. This feature is, however, only present over
a limited domain (up to 20 000 iterations) and once the
curves begin to flatten off, they both stabilise to the same
geo-referencing error of ~60 m.

The rule base estimate was produced using GCP 1 (as
highlighted in Figure 5). The set of eleven GCPs were
used in the training process for both network
architectures, hence no check point data was available.
The results are presented in Table 2. The table compares
the two architectures’ ability to learn the function and not
to recall the function.

GCP Neural Network (m) Hybrid Network (m).
Nor dE dN dL dE dN dL
1 -140 -203 247 87 15 88
2 -74 -102 126 -20 -39 44
3 -208 -201 289 62 50 80
4 186 68 198 18 -72 74
5 -117 -25 120 -70 6 70
6 56 46 72 39 23 45
7 60 24 65 7 -47 47
8 83 12 84 46 -3 46
9 7 -36 37 61 12 62
10 -34 -57 67 -8 -18 19
11 50 56 75 -8 2 9

mean | mean | mean | mean | mean | mean
dE dN dL dE dN dL
-12 -38 125 19 -6 53

Table 2 Comparing the Stand-Alone Neural Network
with the Hybrid Neural Network in Learning

Despite the mean values for dE being of similar
magnitudes for the two types of network, inspection within
the table, reveals a much reduced variance on the
individual dE values when using the hybrid network as
opposed to the stand-alone network. Furthermore, the
mean value for dN is far less for the hybrid network than
it is for the stand-alone counterpart (-6 m compared to -38
m for the stand-alone network). This feature also applies
to the mean residual, dL, which amounts to 53 m for the
hybrid network and 125 m for the stand-alone neural
network.

- Stand-Alone

Hybrid Network

Geo-referencing Error (m)
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Number of iterations
Figure 8 Learning Curves for both Stand-Alone and
Hybrid Neural Network Models

The enhanced performance of the hybrid network can
also be shown by comparing its progress (in training) with
that of the stand-alone neural network. Figure 8 presents
the learning curves of the two networks in their training
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phase. The training set, once again, contained the
complete set of eleven control points. The curves
therefore reflect the manner in which the two networks
learn the function.

The two curves in Figure 8 are clearly distinguishable,
each possessing different features peculiar to their
method of learning. The stand-alone network, after 1000
iterations, has a geo-referencing error of 2000 m. For
clarity, this is off the figure in order to show the lesser
undulations within the learning curve. From the geo-
referencing error of 2000 m the stand-alone network is
quick to learn the hidden patterns within the geo-
referencing function and swiftly progresses to errors of
around 150 - 200 m level after 2000 iterations. The slight
perturbations around the 150 m level are a feature of the
noise added to the network to avoid the occurrence of the
network falling into a false well.

The hybrid network curve within the figure shows a much
smoother learning path in contrast to the stand-alone
network. This curve has a geo-referencing error of 1150
m at 1000 iterations, again for clarity, this is off the graph.
This initial value is almost half that of the other network.
However, using the hybrid approach the network fails to
learn the function at such a rapid rate. The learning curve
is gradual and only approaches a stable value of about
50 m at 25 000 iterations (taking over 10 times as long as
the stand-alone model to stabilse). Though the two
graphs cross at approximately 8000 iterations the
remaining 17 000 iterations have the effect of gradually
reducing the geo-referencing error in the hybrid network
which ultimately results in a final geo-referencing error 2.5
times smaller than that of the stand-alone model.

5.2 Benefits of Hybrid Networks over stand-alone
Networks

The final test was to try to achieve similar geo-referencing
precisions to the hybrid network using a stand-alone
neural network model. The only variable to be altered in
the tests was the number of hidden processing units
within the single hidden layer. The learning term and the
momentum rate were kept at the constant values of 0.15
and 0.6 for all stand-alone neural network topologies and
0.1 and 0.5 for all hybrid network topologies. This was
necessary to keep the number of tests to a realistic
amount. Tests were performed using between 2 and 44
hidden layer units. Some typical results from the tests
have been selected and presented in Figure 9. The tests
were performed to the exhaustive limit of 100000
iterations.

Some of the statistics from the tests are presented in
Table 2. From Figure 9 and Table 2 the noise within the
learning process can be quantified by examining the
standard deviation (std dev) of the scatter from the stable
region of the curve. Despite the network achieving
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precisions of the order of 70 m (for 20 hidden units) the
standard deviation of 12.3 m indicates quite large
deviations from a smooth learning curve. This quantity of
noise is also present on the remaining two curves (those
for 6 and 10 hidden units). The curves suggest the stand-
alone neural network is capable of producing comparable
results to the hybrid network (i.e., 70 m level of precision).
However to achieve this, the network requires additional
processing units within the hidden layer (e.g., from Table
3 the number of units required is 20) and hence additional
computational time to learn the function, even then there
is a large uncertainty, i.e, 12.3 m, associated with the
geo-referencing precision.
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Figure 9 Geo-referencing Error against number of

iterations for different Stand-Alone Network
Topologies

No of Hidden Stand-Alone Network
Units mean (m) std dev (m)

6 153 12.1

10 107 11.4

20 70 12.3

Table 3 Statistics of the Learning Curves
in Figure 9

Similar tests were performed for the hybrid network to see
if prolonged ftraining would lead to improved geo-
referencing. The results are presented in Figure 10. The
most noticeable feature is that all three curves produce
similar geo-referencing errors.

Figure 10 demonstrates that when using a hybrid network
the final geo-referencing error is less dependant upon the
topology of the neural network. However, as can be seen
within Table 4, the final result may be similar for all hybrid
network configurations (i.e., 6, 10 or 20 hidden units) but
the noise in the learning curve gets progressively worse
the more redundant hidden layer processing units the
network possesses.
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Figure 10 Geo-referencing Error against number of
iterations for different Hybrid Network Topologies

No of Hidden Hybrid Network
Units mean (m) std dev (m)
6 59 3.7
10 62 6.9
20 71 12.1

Table 4 Statistics of the Learning Curves
in Figure 10

The results in Table 4 using 20, closely resemble the
results for the same test using the stand-alone neural
network in Table 3, however, the stand-alone neural
network does not achieve the levels of precision achieved
by the hybrid network (i.e., 59 m using 6 units)
irrespective of the number of iterations and number of
hidden layer processing units used in training.

Unfortunately, the hardware used in this work restricted
the exploitation of the parallel structure of the neural
network and hybrid network algorithms. The total time
taken to geo-reference the complete ERS-1 SAR image
(8000 x 8000 pixels) was approximately 3 hr 30 mins. The
time taken to geo-reference the complete image, and the
geo-referencing precision of the hybrid network, are
compared to those of the Platform Trajectory Model rule
base and to those of the stand-alone neural network in
the following section.

6. SUMMARY

The paper has analysed the functionality of a Platform
Trajectory Model approach (§2) a neural network
approach (§3) and a hybrid network approach (§4) for
image geo-referencing. The results of this latter approach
have shown that a hybrid network can achieve better
precisions, while at the same time, remove a significant
proportion of the unmodelled, undetected systematic
errors  which exist when geo-referencing earth
observation imagery using neural networks.

Figure 11 illustrates the relationships when comparing the
geo-referencing precisions and times taken to geo-
reference the complete image using the three
approaches; the Platform Trajectory Model, the stand-
alone neural network and the hybrid network. It must be
borne in mind that it takes more time to train the network
than it does to use it.
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200 +

150 L Stand-alone Neural Network
100 &

50 +

Hybrid Network

I

L ' ' L 4 4
0 2000 4000 8000 8000 10000 12000 13000

Typical Geo-referencing Precision (m)

Time taken to Geo-reference 8000 x 8000 pixel image (seconds)

Figure 11 Comparison of Geo-referencing
Techniques

The tests presented in this paper were not designed to
provide an optimised geo-referencing tool for the
geometric rectification of earth observation imagery. The
tests were performed to analyse the behaviour of an
integrated rule base / neural network processing model.
Similar network architectures, to those presented, may be
used in any area of image processing where there is the
requirement for improving the function mapping ability of
a neural network.
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