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ABSTRACT:

The first part of this paper deals with methodological aspects of land-cover and land-use classification. Due to the high resolution of
today’s remote sensors, the single pixel represents land-cover rather than land-use. The outcome of per-pixel classifications will
therefore not meet the requirements of a land-use map if the spatial composition of cover types is not considered as well. This can be
achieved by applying a spatial postclassification method. We present an algorithm, which analyses the spatial composition of land-
cover types in the local neighbourhood of each pixel. The assignment of land-use classes is based on the comparison of the actual
composition of land-cover types with a predefined rule-set. In the second part the application of the method for building an Aus-
trian-wide land-use model is discussed. To asses the quality of both the method and the derived land-use model, the results are com-

pared to parts of the CORINE land-cover map of Austria.

1. INTRODUCTION

Information on spatial distribution of land-use represents an
essential input to environmental modelling. For analyses on a
national scale no appropriate land-use model of Austria has
been available up to today. Existing land-use maps do not meet
the requirements for an Austrian-wide representation, because
they either are not up-to-date or cover only selected regions of
Austria. Most of these maps result from photogrammetric or
terrestrial observations, which are both cost intensive and time
consuming. Satellite remote sensing represents a valuable al-
ternative to the traditional methods, by offering up-to-date
information of large areas for reasonable costs.

The first attempt to use remote sensing data on a national scale
in Austria was the development of the CORINE land-cover
data-base, a European-wide project initiated by the European
Commission (EUR, 1993). This model is derived from visual
interpretation of analogue satellite images and ancillary data
such as aerial photographs or topographic maps. Due to the
high expenditure of time needed for visual interpretation the
Austrian land-cover map will not be finished before 1997.
Nevertheless there exists an urgent need for such a data-set
today. This paper presents a method which allows a semi-
automated mapping of Level II land-use classes from high
resolution satellite imagery. The method is then applied for the
derivation of an Austrian-wide land-use model.

2. LAND-COVER VERSUS LAND-USE

Per pixel classification of image data acquired by sensors such
as Landsat TM or SPOT HRYV is not always adequate for map-
ping land-use on a regional scale. This is due to the high geo-
metric resolution of the single pixel, which rather represents a
single land-cover type than certain land-use classes composed
of different cover types. For mapping heterogeneous land-use
types the context between a single pixel and its neighbours
seems to be the crucial point. This becomes apparent when
looking at different land-use types of built-up environments,
e.g. low density urban areas. Per pixel analysis of these areas
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will result in a composition of different cover types such as
roofs, pavement, vegetation, bare soil, etc. thus producing a
‘salt and pepper’ pattern rather than the desired land-use class.
Therefore the spectral classification is not sufficient unless the
spatial composition of the cover types is considered as well. To
solve this problem various attempts have been made to include
spatial variation in the classification process.

Textural characteristics can be used to describe the spatial
variation of radiance within an image. Haralick (1973) pro-
posed various methods to derive textural measures from digital
images. When incorporated in multispectral data sets these
texture bands can significantly improve the accuracy of land-
use classification (Franklin and Peddle 1990, Sali and Wolfson
1992, Webster and Bracken 1992). Another approach applies a
two step process. First, a per pixel classification is performed
resulting in a land-cover layer. Second, a postclassification
algorithm analyses the spatial composition of the land-cover
types and assigns the land-use classes in question. The context
between land-cover and land-use classes can either be estab-
lished by training areas and statistical measures (Zhang et al.,
1988, Guo and Moore, 1991, Barnsley and Barr, 1992, Gong
and Howard, 1992) or be defined by rules (Stemnocher et al.
1993, Fung and Chan 1994).

The method presented in this study follows the second ap-
proach. A spatial postclassification algorithm, applied to the
result of a per-pixel land-cover classification, assigns the re-
quested land-use classes using a set of pre-defined rules. For a
better understanding, classes resulting from the spectral classi-
fication will be called primary classes, the final land-use classes
will be called secondary classes.

The algorithm works within a local neighborhood which is
defined by a moving window. Within this window a standard-
ized histogram of primary classes is calculated, representing the
spatial composition, i.e. the frequency of primary classes found
in the local neighborhood. The histogram is then compared to a
set of rules which represent the expected frequency of primary
classes for each secondary class. As soon as a rule is found to
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be true, the corresponding secondary class is assigned to the
center pixel of the window.

Each rule defines the minimum frequency of one or more pri-
mary classes for one secondary class. When compared to the
corresponding elements in the histogram the frequency values
represent thresholds. If all thresholds are exceeded within a
rule, it is recognized as true and the corresponding secondary
class will be assigned. Though experiments with this approach
produced useful results (Steinnocher et al. 1993), only simple
patterns of primary classes could be recognized. Therefore the
design of the rule-set was modified to allow for a combination
of sub-rules within one major rule. Each sub-rule defines a
threshold for one or more primary classes and all sub-rules
have to be true to accept the major rule (Figure 1). Processing
of the rule-set is performed step by step, starting at the top of
the set. As soon as a rule is accepted and therefore applied, the
rest of the rule-set will not be considered any more. If no rule is
found to be true, a rejection class is assigned.

Apart from the design of the rule-set, the size of the analyzed
neighborhood represents a crucial parameter in the postclassifi-
cation process. Choosing a small window size will lead to a
‘noisy’ result since only high frequency structures will be rec-
ognized. If the window is too large the smoothing effect will
become very strong, thus leading to a loss of detail. At this
point it has to be noted that the presented postclassification is a
generalization process and will always suppress some details.
On the other hand, this effect might as well be desired, e.g. for
the generation of thematic maps (Wilkinson, 1993). Since
generalization usually comes with an increase of scale - i.e. an
increase of the pixel size in the raster domain - the algorithm
includes the option of resampling, i.e. the size of the resulting
pixels can be defined as a multiple of the original pixel size.
Since the rule-set and the window sizes are defined by the user,
the right choice of these parameters depends highly on the
user’s experience and on the objective of the application.

3. GENERATION OF THE LAND-USE MODEL
3.1 Data description

The data used in this application comprises 12 cloudftree Land-
sat-TM scenes, covering the entire area of Austria. All images
were acquired between August 7 and October 5, 1991, except
one quarter scene, which was taken in August 1992. Due to
stable weather conditions within the period of data acquisition,
this data-set has a homogenous reflectance characteristic and
therefore represents an optimum basis for further processing. In
addition to the image data, a digital elevation model of Austria
with a resolution of 50 m was available.

For training and testing of the classification process reliable
reference information is indispensable. To guarantee a consis-
tent quality of the results, only data available for the entire area
of Austria were used. The Austrian topographic map 1:50.000
(OK 50) consisting of 213 map sheets provided information on
major land-cover/use types such as man-made structures, water
bodies, forest, bare rock and glaciers. Though the majority of
the maps were updated in the late 1980’s, a visual comparison
with the image data was performed for training- and test-areas
to ensure that no change had occured between the update and
the acquisition of the image data. Since the maps do not distin-
guish between the different uses of open land such as arable
land, pastures, natural grassland etc., a second source of infor-
mation was needed. It was found in a series of analogue satelli-
te photographs, covering about 80% of the Austrian territory.
They were taken by a KFA-1000 camera mounted on the Rus-
sian space-platform MIR in 1991. The images offer two chan-
nels in the red and the near infrared spectrum with a ground
resolution of approximately 7 m. Interpretation of these images
proved to be extremly valuable for generating reliable reference
information.

3.2 Geocoding

To allow for a correct geometrical relationship between re-
motely sensed imagery and other spatial information layers
such as maps, it is necessary to geometrically transform the
images to a map projection system. This transformation is
commonly called rectification or geocoding. In flat terrain it is
sufficient to apply a polynomial transformation based on
ground control points. This approach will not be adequate in
rugged terrain, since pixel displacements resulting from local
differences in elevation are not considered. As most parts of
Austria are extremely mountainous a high level geocoding
method has to be applied to ensure a geometrically correct
result. Based on linear ground control features, the orientation
parameters of each image scan are computed by bundle block
adjustment. Next the image-scans are geocoded with respect to
a Digital Terrain Model. The final result is an Austrian wide
ortho-image mosaic with a ground resolution of 25 m. As this
part of the processing chain was not performed by the author,
no further discussion will be given on this topic. Details on the
theoretical background of high level geocoding and on the
generation of the Austrian image mosaic can be found in Ecker
et al. (1991) and Ecker et al. (1995).

3.3 Spectral classification

As the amount of data to be processed comes up to more than 2
Gigabytes, the ortho images are stratified with respect to the
different Austrian landforms. The average size of the resulting
sub-scenes is about 5000x5000 pixels, including overlap areas
between the scenes.

IF F, [+F, ..

. ELSEIF ...
®
L)

ELSE rejection class

.]> thr [AND F,[+F,, ...] > thr ...] THEN SC
ELSE IF F, [+F, ...] > thr [AND F,[+F,, ...] > thr ...] THEN SC

ELSE IF F, [+F,, ...] > thr [AND F, [+F,. ...] > thr ...] THEN SC

with F,: relative frequency of primary class; SC: secondary class; thr: threshold

Figure 1: syntax of the rule-set
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The stratified scenes are subject to unsupervised classification,
leading to 50 significant spectral classes per scene. The result is
compared to reference data, and land-cover types are assigned
(Table 1). Unsupervised classification is given preference over
the supervised technique, because the assignment of classes a
posteriori is generally less time-consuming than the selection of
training areas - especially when working on large data-sets.
This advantage is diminished by the fact that the signatures
generated by clustering will not always meet the expectations
of the analyst, i.e. one class can be represented by several sig-
natures, and two or more classes might fall into one generated
signature. In the first case aggregation of classes will solve the
problem. The second case cannot be solved without additional
information from the image data. Applying supervised training
for the ‘missing’ classes helps to overcome the problem, thus
leading to a hybrid classification with a few signatures defined
over training areas, whereas the majority of signatures results
from the clustering process. Experience gained during the proj-
ect work has shown that the cover types ‘mixed built-up’ and
‘vineyards’ cannot be detected reliably by clustering. There-
fore, these land-cover types are trained applying the supervised
method. The hybrid classification results in a land-cover layer
representing all classes except the alpine ones (Table 1, 14-15).

A different approach was used for the analysis of areas above
the timberline. In these areas the spectral response of land-
cover is influenced by the different illumination angles result-
ing from variation of the terrain. This so called terrain effect
can be significantly reduced by employing ratio images. De-
spite the loss of information caused by image rationing, the use
of the NDVI proved to be sufficient for identification of the
cover types in question. To distinguish between ‘alpine’ and
‘non alpine’ cover types the digital terrain model is intersected
with the classified image. All cover types except forest and
water are defined as alpine areas if located above a certain alti-
tude. For these areas the NDVI is calculated and thresholded
with respect to reference data, thus allowing for the seperation
of alpine vegetation and non vegetated alpine areas.

ciers. Natural vegetation represents all areas with vegetation
cover except forest, which do not result from human activities,
e.g. natural grassland and shrubs. No vegetation stands for
opened spaces with little or no vegetation such as bare soil or
rock. Water comprises water courses as well as water bodies,
wetlands represents non-forested waterlogged areas.

Level I Level II

[ artificial surfaces 1.1 high density urban

1.2 low density urban

1.3 green urban

1.4 industrial/commercial/traffic
1.5 mineral extraction sites

II agricultural areas | IL.1 arable land

I1.2 vineyards

I1.3 pastures

I1.4 heterogeneous agricultural areas

I natural areas L1 forest

I11.2 natural vegetation
IIL.3 no vegetation
1.4 glacier

IV wetlands IV.1 wetlands

V water . V.1 water

1 water 9 grass (high)

2 pure built-up 10 grass (low)

3 mixed built-up 11 wetlands

4 pavement 12 shrub

5 gravel 13 forest

6 bare soil 14 alpine vegetation

7 crops 15 non vegetated alpine areas
8 vineyards 16 glaciers

Table 1: example for land-cover classes

3.4 Spatial Classification

The definition of the final land-use types is adapted from the
CORINE land-cover nomenclature (EUR, 1993) and comprises
5 Level I and 15 Level II classes (Table 2). High and low den-
sity urban represent different densities of built-up areas, green
urban areas refers to artificially vegetated areas within an ur-
ban environment, such as parks or cemeteries. Indus-
trial/commercial/traffic areas include industrial structures and
shopping malls as well as large train stations and airports. Min-
eral extraction sites comprises all kinds of surface mines.
These five land-use classes are aggregated under artificial sur-
faces. The second Level I class, agricultural areas, is separated
into arable land, vineyards and pastures. Agricultural areas,
where none of the three land-use types dominates, are defined
as heterogeneous agricultural areas. Forest and natural areas
comprises forest, natural vegetation, no vegetation and gla-

Table 2: land-use nomenclature (adapted from CORINE, 1993)

To derive the land-use classes the spatial postclassification
algorithm is applied to the land-cover layer. As discussed
above, the result of this algorithm strongly depends on the size
of the window which determines the degree of generalisation.
The size of the output pixel is defined by 4x4 input pixels, thus
leading to a cell-size of 100x100m in the final land-use layer.
Based on the experience gained from former studies on spatial
classification (Steinnocher et al. 1993, Ecker et al. 1995) two
different window sizes are defined as local neighbourhood,
depending on the land-use classes. In the first run, artificial
surface classes, forest, glacier, water and wetlands are post-
classified applying a 8x8 pixel window. This size corresponds
to 200x200m, which is suitable for recognising urban struc-
tures without causing too much generalisation. Homogenous
classes such as forest (IIL.1), glacier (111.4), water (V.1) and
wetlands (IV.1) can be found by examining the portion of the
corresponding cover-type within the window (Table 3: rule 1-
3). To detect heterogeneous land-use types, a composition of
primary classes has to be analysed (rule 4-7), e.g. high density
urban (1.1) is expected to consist more than 70% of pure built-
up (2) and pavement (4), with pure-built up covering at least
40% (rule 5). All areas which do not meet any condition in the
rule-set are assigned to the rejection class.

rule condition land-use class

T(13)> 50 % I
£(17)> 50 % 114
f(1) >50% V.1

f9) >50% IV.1

{f(2) +f(4)} > 70 % AND f(2) > 40 % 1.1
{f(2) + f(4)} > 70 % AND f(4)> 40 % 1.4
{f(4) + f(5)} > 70 % AND f(5) > 40 % L5
{f(3) +f(4)} > 50 % AND f(3)>30% 1.2
ELSE :0 (rejected)

00 1 O\ L B W

with f(n): frequency of land-cover type n (class numbers refer to tables 1 and 2)

Table 3: example of rule-set I

The rejected areas are used as a mask for the primary classifi-
cation layer, thus leaving only non-postclassified areas for the
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second processing step. The remaining land-use classes, agri-
cultural and natural areas, are postclassified with a window
size of 16x16 pixels, which equals 400x400m on the ground.
The higher degree of generalisation corresponds with the
definition of these classes, as they are to represent dominant
forms of land-use. This is considered in rule-set II (Table 4)
which first examines the dominant occurrence of agriculture
(rule 1-3) and natural vegetation (rule 4). If no dominant cover-
type is found, a composition of cover-types is considered (rule
5), i.e. any combination of different agricultural cover types or
of agriculture with natural vegetation covering more than 80 %
will be classified as heterogeneous agriculiural areas (11.4).
Rule 6 and 7 test for the dominant occurrence of vegetation
within alpine areas.

rule condition land-use class

1 {f6) +f(7)} >70% AL
2 f(8)>70% 1.2
3 {f(10) + f(11)} > 70 % 1.3
4 {f(12) + f(13)} > 70 % 1112
5 {f(6) + f(7) + £(8) + f(10) +
f(11) + f(12) + f(13)} >80 % 114
6 {(13+14)} > 50 % 1112
7 {(15+16)} > 50 % JIL3
ELSE :0 (rejected)

with f(n): frequency of land-cover type n (class numbers refer to tables 1 and 2)

Table 4: example of rule-set II

The two resulting layers are then intersected, giving priority to
the less generalised structures of the first postclassification.
Assuming an optimum design of the rule-sets, all pixels are
assigned a land-use class at this stage. Experience has shown,
though, that up to 5% of the pixels will fall into the final rejec-
tion class, i.e. they are rejected by both rule-sets. The majority
of these pixels occur as single pixels within a classified neigh-
bourhood, e.g. on the border between two land-cover types,
where neither reaches the majority within the local neighbour-
hood, though both cover types are close to it. These pixels can
easily be classified by assigning the relative majority of a 3x3
neighbourhood.

In addition to these ‘border cases’, larger rejected areas might
occur, resulting from particular combinations of cover types
not considered in the rule-sets. For classification of these areas
we propose interactive post-editing rather than setting up addi-
tional rules, as the consideration of all possible combinations of
cover types seems unrealistic. Post-editing might also be neces-
sary for some of the artificial surface classes, where the defini-
tion of the class is based on the spatial context rather than on
the local pattern of cover types, e.g. green urban areas are
defined as vegetation within an urban environment. Similar
problems might occur in the separation of industrial areas from
particular mineral extraction sites such as gravel-pits. Being
aware of these problems the post-editing process can be con-
centrated on the doubtful areas, thus reducing the time needed
for interactive work to a negligible amount within the entire
project.

4. RESULTS AND DISCUSSION

To assess the quality of the land-use model it was imported to a
GIS and compared to the CORINE land-cover data-base. Six
map sheets were chosen from available 2parts of the CORINE
data-base, each covering about 500 km~. Therefore, the total
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number of pixels evaluated comes up to about 300.000, which
equals 3.5 % of the entire area investigated. When selecting the
map sheets, attention was paid to consider different forms of
the Austrian landscape. The test sites contain all classes except
glacier as no layer containing glacier is available yet.

For comparison the CORINE vector layers are converted to a
raster representation, using the raster of the land-use model as
geometric reference. In addition, the 44 CORINE classes are
aggregated according to the 15 land-use classes. CORINE de-
fines the smallest mapping unit with 25 hectares, therefore all
areas smaller than 25 hectares are eliminated in the land-use
model and redefined applying an iterative majority filter.

Intersection of the two models at all test sites allows for the
derivation of confusion matrices. Table 5 shows the overall
confusion matrix for Level-I and Level-II land-use classes,
including totals and percentages of identical results. The rows
of the matrix represent the CORINE land-cover, the columns
are the result of the automated classification. With a sample of
less than 100 pixels, Mineral extraction sites (1.4) is underre-
presented and therefore not considered in the matrix. The fol-
lowing discussion is based on comparison of conflicting areas
to reference data. It concentrates on the examination of sys-
tematic errors of both the automated and the visual classifica-
tion.

When analysing the confusion values of Level-I classes a high
correspondence between the two data sets can be observed (>90
%). Some deviations are found between artificial surfaces (1)
and agricultural areas (II), resulting largely from differences in
low density urban (1.2), and between agricultural areas (II) and
natural areas (1II), which is due to a different classification of
forest.

Within agricultural areas there is a significant confusion be-
tween heterogeneous agricultural areas (11.2) and arable land
(IL.1) as well as pastures (I11.3). The reason for this disagree-
ment becomes obvious when comparing maps of both models
(Figure 3). Whereas the automated classification reacts rather
sensibly to local variations of land-use, visual interpretors have
a tendency to integrate larger areas within one class (compare
patchy pattern in the left upper part of the left map with same
area in the right map in Figure 2).

The most critical confusions are found within natural areas
(II). Forest (111.1) was slightly overestimated in the automated
approach, which results in differences of totals for this class
(compare sum of column III.1 with sum of row IIl.1 in Table
4). Comparison with reference data has shown that long and
narrow valleys which are surrounded by forest, get lost during
the postclassification process, although they are larger than 25
hectares and therefore classified in the visual interpretation.
These patterns are typical for the alpine landscape and cause
the majority of confusion between forest and agricultural areas.

Natural vegetation (I11.2), which occurs predominantly in the
high alpine regions, is strongly confused with forest (III1.1) and
no vegetation (I11.3). Detailed analysis has shown that areas
clearly recognised as forest in the reference data were actually
classified as natural vegetation in the CORINE data-base. This
may be partially explained by the fact that dwarf-pines, classi-
fied as forest in the automated process, were interpreted as
natural vegetation in the CORINE land-cover maps. Though
dwarf-pines cover large areas in the Alps, it is doubtful that
they are the only explanation for this confusion. We assume
that the different illumination angles are the essential reason for
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Automatic classification Visual interpretation

high density urban arable land M ot
low density urban pastures B vaer
industrial heterogeneous (I):-:-:5_10km

Figure 2: Result of automatical classification compared to CORINE land-cover map (OK 50-49 Wels)

CORINE Land-use model
LI L artificial surfaces IL. agricultural areas IIL natural areas v A% z %
L 11 12 13 14 1 2 n3 o4 .1 m2 | o3 § IVl vl b %
I L1 26 6 0 0 [} 0 0 0 0 0 0 0 0 33| 798| 252 815
12 7| 116 1 8 17 4 0 9 2 0 0 0 41 170 | 68.6
13 0 3 4 2 0 0 0 0 2 0 0 0 2 13 ] 276
L4 1 7 0 23 2 0 0 2 0 0 0 0 1 36 | 627
o |oi 0 18 0 6] 715 4 2 65 16 2 0 0 1} 829 | 862} 1531 | 89.1
o2 0 0 0 8 81 0 5 2 3 o 1 1] 102} 792
13 0 5 0 0 13 1 81 60 32 4 0 3 21 201 | 403
14 0 11 0 0 76 3 40 211 52 2 0 1 2 398 | 53.0
m | Il 0 3 0 1 20 1 13 291 818 21 2 1} 2] 910 | 89.8 | 1067 | 93.1
m2 0 0 0 0 0 0 3 0 48 33 1 0 0 84 ] 390
m3 0 0 0 0 0 0 0 0 15 30 26 0 0 73 | 416
v [ Ival 0 0 0 0 1 2 0 1 0 3 0 76 3 86 | 884 86 | 884
v V.1 0 1 0 0 0 0 0 1 3 0 0 2 154 161 95.2 161 | 952
z 351 172 5 401 853 96 | 139 3821 991 98 29 83} 173 | 3097
Yo 760 | 67.7 | 656 | 56.6 ) 838 | 84.2 | 583 | 552 | 8.6 335] 915} 913 ] 888 76.3
z 253 1471 1118 83 173 3097
81.3 92.8 88.9 91.3 | 88.8 90.2

Table 5: Confusion matrix for Level I and Level II land-use classes (elements = absolute numbers / 100)
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the contradiction between the models. By including index im-
ages in the classification process, the topographic effect could
be significantly reduced, whereas for the visual interpretation
only the original images were available. The same considera-
tion is valid for the confusion between natural vegetation and
no vegetation, though areas without vegetation cover were
slightly underestimated in the automated approach.

Summing up, the confusion between the two data-models can
be explained by three major causes - the different methods
applied, the different representation of the data, and in a few
cases a different interpretation of the nomenclature. The last
aspect refers above all to the definition of natural areas and is
subject to ongoing discussion. A certain amount of confusion is
due to the limited accuracy of linear features in raster represen-
tation.

The major differences, though, result from the different meth-
ods applied. Whereas the automated approach has a tendency
of smoothing complex shapes, it is rather sensitive to local
variations of land-cover. Thé visual interpretation, on the con-
trary, is very accurate in the demarcation of single objects but
is less sensitive to changing patterns within a larger heteroge-
neous environment. These effects are obviously caused by the
different approaches towards generalisation. Visual interpreta-
tion usually defines the dominant class in an image as
“background” and “cuts out” the remaining classes. The post-
classification algorithm is always limited to the window size
and therefore does not consider dominant classes in a larger
environment, but reacts to any change within this local neigh-
bourhood. This effect can best be observed when analysing
heterogeneous agricultural areas. This class is strongly con-
fused with arable land, pastures and forest, which are all the-
matic neighbours of this class and typical candidates for
“background classes”. The total of this confusion comes up to
11% of the entire test area and therefore represents the major
disagreement between the two models.

5. SUMMARY AND CONCLUSIONS

The presented paper gives a contribution to the discussion of
land-use versus land-cover classification. A method is pre-
sented that examines the spatial composition of land-cover
types in a local neighbourhood and assigns land-use classes
based on a predefined set of rules. Though postclassification of
this kind will always have a generalising effect and therefore
leads to a loss of details, it is powerful in detecting heterogene-
ous land-use classes composed of a particular composition of
land-cover types.

The application of the method is not limited to a single test
region but is performed for the entire area of Austria. Compari-
son of the resulting land-use model with parts of the CORINE
land-cover map of Austria confirms the usefulness of the cho-
sen procedure for mapping land-use on a regional scale. Never-
theless, there exist obvious differences in the two models,
which are due to the different approaches towards generalisa-
tion. For the postclassification process, the size of the local
neighbourhood seems to be the crucial parameter. Though two
different window sizes were used in the application this might
not be sufficient for a reliable recognition of all land-use ob-
jects. Furthermore, the postclassification algorithm could be
improved by not only considering the frequency of land-cover
types, but also their spatial arrangement.

846

Unexpected contradictions between the models were found in
the alpine areas. Besides the different thematic interpretations
of a few land-cover types, the essential reason for the confusion
of classes seems to lie in the different illumination angles in
rugged terrain. Whereas in the manual approach no correction
was performed at all to overcome this problem, index images
were used in the automatic classification process, thus reducing
the topographic effect to a certain extent. Although image ra-
tioning does improve classification accuracy in alpine areas, it
might be valuable to perform topographic normalisation by
applying a Digital Terrain Model.

Although the presented approach needs further research, it
represents a valuable alternative to visual interpretation of
satellite imagery, as it is definitely less time-consuming and
therefore significantly reduces the costs of land-use mapping
on regional or national scale.
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