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ABSTRACT:

Production Efficiency Model (PEM) being used to evaluate Net
Primary Productivity (NPP) requires decomposition of productivity
into independent parameters involved in the production built up
process. PEM has been used for the estimation of NPP of the
natural vegetation but in a first attempt of its kind it was used
to estimate agricultural productivity for Indian territory. The
study involved mainly three steps, (i) identification and map -
ping of agricultural areas (ii) estimation of agricultural pro-
duction and (iii) analyses of annual and interannual variations
in agricultural productivity.

The agricultural areas were identified and mapped wusing NDVI-
Climatological modeling technigque. NASA/NOAA Pathfinder AVHRR
Land (PAL) 10 day composited NDVI data with a spatial resolution
of 8 km was wused for the study. The agricultural pixels were
identified as outliers in the NDVI-rainfall relationship devel-
oped using annual integrated NDVI and annual rainfall data for
the year 1989. An irrigated agricultural areas map was generated
using the value of these pixels.

The NDVI data for the years 1987, 1988, 1989 was used to estimate
fraction of PAR absorbed (fAPAR) based on the relationship £APAR
= -0.31+1.39*NDVI provided by the SAIL model. Incident PAR (IPAR)
data set for India was extracted from the monthly global IPAR
data set already generated using UV reflectivity data from Nimbus
Total Ozone Mapping Spectrometer (TOMS). The IPAR data when com-
bined with the fAPAR data, provided absorbed PAR (APAR). Assuming
the irrigated agricultural areas mapped above as constant over
the three years period, the agricultural APAR was extracted using
the irrigated agricultural areas mask. Agricultural APAR was
subsequently converted to agricultural NPP using the mean conver-
sion efficiency (e¢) value of 2.07 calculated for cultivations
based on literature survey. The agricultural NPP was finally
converted to economic yield based on the area weighted average
harvesting index of various crops grown in India. The annual and
interannual variation in agricultural productivity of India have

been discussed vis-a-vis reliability of the model for these
studies.
1. INTRODUCTION Agricultural productivity with
its fundamental role 1in food
Intenational Geosphere Bio- supply has been the obvious
sphere Program (IGBP, 1992) focus. Due to its dependence on
envisaged creation of improved various external factors and
global data sets to properly the attendant uncertainties,
evaluate the environmental large regional disparities
changes occuring on regional exist 1in the agricultural pro-
and global scales. Frequent duction which needs to be
availability of remote sgensing properly evaluated for global
data through wvarious satellites planning. Studies on product-

have now made it possible to ivity usually focus on two
get better estimates of carbon aspects:

fixation and terrestrial pro- (a) To predict the crop produc-
ductivity on earth. Various tion of a certain vyear before
estimates for global net prim- harvest wusing simple statisti-
ary productivity has been made cal models. Models used for
with rather large disgscripancies this purpose, specially Spec-
between the estimates (Ruimy tral Indices-Yield Regression
et.al. 1994) . Better tech- models (Dubey et.al. 1994), are

niques, therefore, needs to be usually developed for a certain
developed for making reliable kind of crop in a small region
estimates of productivity. and have strong dependence on
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local characteristics.

(b) To evaluate net primary
productivity (NPP) to provide
spatial information that can be
used for land use planning
using more recently developed
and sophisticated Production
Efficiency Model (PEM).

PEM which can also use remote-
ly sensed data as inputs, has
been successfully used for
estimation of global NPP
(Prince and Goward 1995), but
no separate estimates for
agricultural productivity has

vet been attempted on a region-
al and global scale. Therefore,
agricultural productivity

estimation was taken up for
India, one of the agricultural-
ly dominant country, using PEM.

2. Theory
Productivity is the rate of
atmospheric carbon uptake by
vegetation through the process

of photosynthesis. Built up of

productivity is a complex
phenomenon which is a
culmination of many temporal

Recent methods
NPP involves
productivity

plant processes.
to evaluate
decomposition of
into independent parameters
such as incoming solar
radiation, radiation absorption

efficiency and conversion
efficiency of absorbed
radiation into organic matter
(Kumar and Monteith, 1981). The
models developed in these

studies are an advancement over
the statistical models properly

accounting for wvarious steps in
the productivity built up
process.

Goward et.al. (1985) showed that
vegetation indices, such as
Normalized Difference Vegeta-
tion 1Index (NDVI) are related
to n%t prlm%yy production (NPP,
g m yvear Monteith (1977)
suggested that NPP under non-

stressed conditions is linearly
related to the amount of photo-
synthetically active radiation
(PAR, MJ m ) that 1is absorbed
Ey green foliage (APAR, MJ m

Further, Kumar and Monteith
(1981) showed how the fraction
of PAR absorbed (fAPAR) relates
to the ratio of red reflectance

(R) to near infrared (NIR) .
Asrar et.al. (1984) subsequent-
ly related the NDVI to the
fAPAR; hence NDVI may be used

to estimate NPP at global scale
by the relationship:

NPP=¢Z (APAR) =¢Z (NDVI*IPAR)
is the annual sum

€ is the PAR
efficiency (g MJ )

where X (APAR)
of APAR,
conversion
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and IPAR 1s the 1incident PAR.
This is the simplest form of
the Production Efficiency Model
(PEM) .

described a

Eck and Dye (1991)

simple, physically based,
satellite remote sensing method
for estimating IPAR that uses
ultraviolet (Uv) reflectivity
data from the Nimbus Total
OCzone Mapping Spectrometer
(TOMS) . Subsequently, Dye
(1995) generated a time series
global monthly IPAR data set
using the same technique, which
is qguite wuseful for regional

and global productivity studies

(Prince and Goward, 1995). Dye
and Goward (1993) also created
a global APAR image using

spectral reflectance measure -
ments from the NOAA-7 AVHRR and
TOMS data.

One of the major problem in the
NPP estimation 1is the finding
of representative wvalues o0f e

for various vegetation types as
it changes with the type of
vegetation, temperature, water

availability and metabolic type

of the plant (C or C, type) .
Prince 1991 and~” Ruimy “et. al.
(1994) searched through the
literature and listed € wvalues
for various vegetation and
ecosystem types. Hunt (1994)

suggested that global estimates

of NPP based on vegetation
indices should include a clas-
gification among established
forest, vyoung forest and non-
forest ecosystems to account
for differences in e€.
3. DATA

3.1 Satellite data

3.1.1 NDVI data: NASA/NOAA
Pathfinder AVHRR Land (PAL) 10
day composited NDVI data set
for the vyear 1987, 1988, and
1989 was procured from the
Goddard Distributed Active
Archive Center (DAAC), USA. To
generate composited data set,

10 consecutive days of data are
combined, taking the observa-
tion for each 8 km bin from the
data with the fewest clouds and
atmospheric contaminants as
identified by the highest NDVI

value. There are three compo-
sites per monthh for each vyear
of data. The compositing tech-
nique fairly removes the c¢loud
contamination from the data to
use in climatic modeling stud-
ieg (Agbu and James, 1994). The
data 1s available on Goode's
Equal Area Projection.

3.1.2 IPAR data: Global IPAR
data set generated by Dye
(1995) using UV reflectivity
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Nimbus TOMS sensor
through the method of Eck and
Dye (1991) was used for the
present study. This TOMS 1IPAR
data set consists of monthly
average estimates, at a spatial
resolution of 1°*1° degree from

data from

66°N to 66°S latitude. The data
for the Indian region was
extracted from the global data
set and interpolated to match
the 8 km resolution of NDVI
data.

3.2 Climatic data

Time series c¢limatic data for
India including daily rainfall,

maximum and minimum temperature
were extracted from Global
Summaries prepared by National
Climatic Data Center, USA. This

contained daily observations
for more than 200 stations of
India for 1977-1991. But com-
plete data for only about 75
stations in India was available
for the year 1989 which was
used in the present study. The
daily data was converted to
monthly rainfall and monthly

average mean temperature.
4. MAPPING AGRICULTURAL AREAS:

the
the

One of
faced in
agricultural

major challenge
estimation of
productivity is

the mapping of agricultural
areas. Therefore, efforts were
made to develop an automated

identifi-
agricul-
NDVTI-

technique for the

cation and mapping of
tural areas based on
climatological modeling. The
concept 1s based on the fact
that the NDVI of the natural
vegetation 1is expected to show
a positive correlation with the

climatic factors of the area,
but not the NDVI of the agri-
cultural crops which are arti-
ficially managed by supplying

additional inputs in terms of
water and nutrients. Therefore,
there is a possibility of
identifying the agricultural
pixels as outliers in the NDVI-
climatological relationship
(Hooda and Dye, 1995).

The NDVI and climatic data for
the vyear 1989, a normal vyear
with respect to monsoon
effecting Indian agriculture,

was used for the present study.
The point climatic data for
about 75 meteorological

stations was correlated against

the average NDVI in a 3*3 pixel
window around the same
location. Relationship was
tried for different cCrop
growing seasons of winter,
summer and monsoon as well as

on annual basis.

No relationship between NDVI
and mean temperature could be
observed in the present study.

could be
tropical
not

The possible reason
that India is a
country and temperature 1is
a limiting factor for the
growth of vegetation for most
of the year. Relationship
between NDVI and rainfall in
different seasons also could
not be observed but the annual
integrated NDVI did show a
logarithmic relationship with
the annual rainfall. However,
some outlier pixels showing
very high NDVI at 1low rainfall
were also noticed. The rela-
tionship improved signifi-
cantly after removing these
outlier pixels. Based on this
analysis a pixel was classified
as agricultural pixel if,
INDVI=0.0042*ann. rainfall+0.5
technique identifies
pixels at low
would be 1logical
these pixels as
irrigated agricultural pixels
because only irrigated crops
can show high NDVI even at 1low
rainfall due to availability of
water through irrigation. Thus,

Since this
high NDVI
rainfall, ‘it
to assume

one of the 1limitations of the
technigque 18 that it may not
separate out dry land

areas as well as
some of the irrigated areas in
the high rainfall eastern
region of the country. However,
when compared with the
available 1rrigated areas map
of the country, the technique
seems to give a fair idea of
the major irrigated areas 1in
the country. The net irrigated
area reported in the country is
only 397290 s8g. km., Dbut the
net sown area with reasonably
assured water supply is
reported as 726170 sqg. km.
(Anonymous, 1987) compared to
750016 sg. km. observed based
upon the present technique.
Thus, the NDVI-climatological
technique proved gquite useful
in quickly generating an
irrigated agricultural areas
map. This map was used as a
mask to extract different data
sets for only agricultural
areas of India.

agricultural

5. AGRICULTURAL PRODUCTIVITY
ESTIMATION

Use of PEM for
productivity involves
steps as detailed below:

estimating
different

5.1 Fraction of IPAR absorbed
by vegetation (fAPAR)

vegetation index
produced by

The spectral
measurements
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calculating the NDVI have Dbeen
shown, empirically and
theoretically, to be related to
fAPAR in vegetation canopies
(Ruimy. et.al., 1994). Although
there are several possible
limitations to such an
inference, it does appear that
an approximation of this fAPAR
can be derived from the NDVI
(Myneni and Williams, 1994) .
Ruimy et.al. (1994), after an
extensive search through the
literature, tabulated various
relationships between fAPAR and

NDVI developed by different
workers. For the present study
relationship based on SAIL

model simulation was used which
is represented as:

fAPAR

~0.31+1.33*NDVI

The 10 day composited NDVI data

was first averaged to give
average monthly NDVI for all
the three vyears. Calibrations
for negative wvalues on land in
the NDVI data were made 1in way
to set the Dbare so0il fAPAR to
zero. This calibration required
a uniform enhancement of 0.1
NDVI wunits in the data. From

average monthly NDVI, fAPAR for
each month was calculated using
the above equation.

5.2 Absorbed Photosynthetically
Active Radiations (APAR)

The APAR calculations required
IPAR and fAPAR data sets for
India. Monthly fAPAR data set
of 1India for the three vyears
was generated as described in
the previous step. The monthly

Indian IPAR data extracted from

TOMS global data set of Dye
(1995) was combined with the
respective fAPAR data to gige
monthly APAR in MJ m .

Assuming the agricultural areas

mapped above as constant for
all the three vears, the
agricultural APAR was extracted
using the agricultural areas
mask already generated.

5.3 Agricultural NPP, biomass

and production

Agricultural NPP is defined in
the present study as the dry
matter (both above ground and

below ground) produced per unit

agricultural area and biomass
as the total dry matter
produced. Production 1s defined
as the dry matter partitioned

into economic yield.

The conversion of APAR into
productivity requires conver-
sion efficiencies of APAR into
dry matter (€) of various
crops. Since we had only an
agricultural areas map where
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different crops are not identi-
fied, therefore, a mean conver-
sion efficiency wvalue for all
the cultivations is required
for wuse in the model. Ruimy
et.al (1994) conducted an

extengsive literature survey and

tabulated the € values for
different types of wvegetation
reported by different workers.

But most of the workers report-
ed € wvalues 1in terms of above
ground dry matter only. To
overcome this problem they also
searched through the literature
to estimate a mean ratio of
below ground NPP to above
ground NPP and arrived at a
value of 0.24 for cultivations.
Based on this factor they
arrived at a mean € value of
2.07 g dry matter (ahgye ground
and below ground) MJ of APAR
for cultivations for converting
APAR data into NPP. This wvalue
was used for converting APAR
data into agricultural NPP and
biomass in the present study.

can be converted to
agricultural production using
the Harvest Index (HI) values
of various crops. HI wvalues for
major summer and winter crops,
locally known as Kharif and
Rabi crops, respectively, were
collected through literature
survey. An area weilighted aver-
age HI for summer and winter
season cCcrops was calculated as
0.275 and 0.279, respectively.
These values were used to
calculate the monthly produc-
tion from monthly NPP.

The biomass

5.4 Annual and Interannual
variations in biomass and
production

The monthly agricultural NPP

and Dbiomass produced in the

Indian territory as calculated

using the above steps are shown
in table 1. The NPP and
consequently biomass starts
building wup in January after
the sowing of winter Season
crops 1in December. It reaches
its peak in the month of
February/, March due to peak
vegetative growth of the crops
and then drops suddenly in
April due to harvesting of
winter Crops. The biomass
generation remains low 1in the
summer months of May and June
and again starts building up in

July/August due to onset of
monsoon and growth of summer
crops. This again reaches 1its
peak 1in September/October and
then falls suddenly in November
due to harvesting of summer

crops. Sowing of winter season
Crops starts in the end of

November or December and there-
fore, the biomass remains low
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Table 1. Estimates of agricultural NPP and biomass for India.

Months NPP (Q ha 7) Biomass (Million tons)
1987 1988 1989 1987 1988 1989

1 3.67 4 .82 7.11 27 .55 36.14 53.36

2 6.90 6.10 8.98 51.73 45.75 67.33

3 6.56 6.57 8.87 49.18 49.58 66.49

4 3.47 2.14 6.03 26.02 16.15 45 .21

5 3.94 4.31 3.33 29.58 32.54 24.94

6 4.52 3.55 3.57 33.93 26.79 26.79

7 3.32 2.62 4.67 24.89 19.77 35.00

8 6.52 7.92 7.59 48.90 59.83 56.94

9 8.19 10.05 11.63 61.45 76.88 87.23

10 7.67 8.42 11.81 57.56 63.58 88.57

11 4.89 6.28 6.29 36.67 47.40 47.15

12 3.69 5.28 4 .55 27.67 39.86 34.15

Annual 58.68 62.75 83.12 470.13 514.27 633.16

during these months. Thus the figures are as per the

PEM seems to describe correctly agricultural year i.e. starting

the annual variations in agri- from summer crops in June/July

cultural biomass generation. and ending with the harvesting
of winter crops in April in the

Agricultural NPP of _p8.68, next calender vyear. However,

62.75 and 83.12 0 ha and the general trends of agricul-

biomass of 470.13, 514.27 and tural production compares

633.16 million tons was fairly well with the reported

estimated for the vyears 1987, figures.

1988 and 1989, respectively.

This biomass wag translated 6. CONCLUSIONS

into 136.31, 147.56 and 181.16

million tons of agricultural Based upon the present study it

production for the above three could Dbe concluded that the

years. NDVI-Climatological modeling
technigque developed provided an

The performance of monsoon 1is automated and quick way to map

the c¢critical factor in Indian
agriculture as it 1is the gingle

most important factor effecting
agricultural productivity. A
study in the behavior of Indian
mongsoon showed that it was
normal for the vyear 1989. But
it showed a negative anomaly
during 1987 and a positive
anomaly during 1988 causing
drought and floods in the two
years, respectively. Therefore,
the crop growth and
agricultural productivity was

drastically reduced in both the
years. This interannual anomaly
in agricultural productivity
could also be described through
the present methodology using
PEM. The highest agricultural
production of 181.16 million
tons was estimated for the vyear

1989 as compared to 136.31 and
147.56 million tons for the
years 1987 and 1988,
respectively.

We made an effort to compare
the estimated agricultural
production figures with the

reported figures from Bureau of
Economics and Statistics (BES).
But we find 1t difficult to
compare the figures because the

estimated values are an
integration over the calender
yvear whereas the BES reported
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irrigated agricultural areas in
India. It was possible to make
fairly correct estimates of
agricultural production for

India using the PEM. The model
was also able to describe the
annual and interannual
variations in agricultural

production of India. Therefore,
the technigque developed in the
present study seems to have a
great potential for estimating

agricultural production more
accurately.
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