UNMIXING WETLAND VEGETATION TYPES BY SUBSPACE METHOD
USING HYPERSPECTRAL CASI IMAGE

Yoshiki YAMAGATA, Yoshifumi YASUOKA

National Institute for Environmental Studies
16-2 Onogawa Tsukuba Ibaraki JAPAN
yamagata@nies.go.jp

Commission V, Working Group 5
XVIII ISPRS Congress Vienna, 9-19 July 1996

KEY WORDS: Unmixing, Wetland Vegetation, Hyperspectral , Subspace Method

ABSTRACT:

A new approach to unmixing with subspace methods is proposed and an experiment using hyperspectral
images was conducted. In subspace method, unmixing is calculated as the projection of each unknown
pixel vector on the subspace of each class. This method is more stable than conventional methods against
noise in the data and works effectively as a feature extraction and data reduction procedure as well. The
performance of this method was tested by an unmixing experiment using a hyperspectral airborne CASI
image acquired over the Kushiro wetland in NE Japan. Unmixing for the 7 wetland vegetation classes
were calculated using a least squares, quadratic programming, orthogonal subspace projection and the
subspace method. Finally, the results of unmixing experiment were evaluated in regard to wetland

vegetation monitoring.

1. INTRODUCTION

In wetland landscape, various vegetation types
are continuously distributed. Remotely sensed
spectral data over wetland areas are spectral
mixtures of several vegetation types. These
images consist of mixed pixels (Mixel) which have
to be analyzed wusing spectral unmixing
procedures to estimate the state of each of the
constituents (Settle and Drake, 1993).

Conventional statistical unmixing methods such
as least squares use a linear mixel model. In this
model, the mixed spectral vector is assumed to be
a sum of class spectral vectors which constitute the
mixel. By solving this linear mixel model with the
pre-determined class vector, an estimate of the
fractional area of each class within the pixel.

However, the computational complexity
increases substantially as the number of image
channels increases and the least squares solution
becomes unstable due to the high auto-correlation
between the channels. It is necessary to reduce the
spectral dimension dimensions of the problem as a
preprocessing of unmixing (Malinowski, 1991).

Hyperspectral sensors are a recent development
in remote sensing and have been used for
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environmental monitoring (Kramer, - 1992).
Hyperspectral imaging is recognized as an
effective means for estimating vegetation
parameters (Gong et.al., 1994).

To unmix the very large number of channels in
hyperspectral imagery, it is necessary to establish
an algorithm which can unmix several vegetation
types in a fast and stable manner. A number of
unmixing methods designed for band selection,
feature extraction and dimension reduction which
incorporate modern signal processing and neural
network methodologies, have been explored
recently (Harsanyi and  Chang, 1994,
Benediktsson et.al., 1995).

Unmixing by the subspace method (Oja, 1984)
utilized in this paper is a new approach, based on a
fundamentally different principle from
conventional methods. The subspace method
assigns a different subspace to each vegetation
class instead of fitting a mixel model in a pre-
determined number of spectral dimensions.
Unmixing is then performed by measuring the
projection length of mixel vector. In addition,
subspace method unifies the process of feature
extraction and unmixing, which are usually
separate processes in conventional methods.

In this paper, the principle of the new unmixing
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approach by the subspace method is explained,
along with an experimental results derived from
Compact Airborne Spectral Imager (CASI) data to
compare this new method with conventional
approaches.

2. UNMIXING BY SUBSPACE METHOD

2.1 Statistical unmixing methods

Conventional statistical unmixing methods
assume that the mixel spectral vector is a
weighted mean of the class spectral vector which
constitutes the mixel. Within each mixel, there are
several mixed classes with area fractions which
correspond to the weights of the model. These
weights are estimated by the unmixing method.

In a remotely sensed image with p channels A
land cover classes exist in the image and area
fraction of classw(@) is £i . A linear mixel model
assumes that the observed p dimensional vector »
is expressed as

K
r:Mf+n:2f,.mi +n @O

. =1

Where M is a p x p matrix which has class
spectral vectors mi as column vectors, £is a vector
which has £ as components, and the n stands for
noise vector. ;

Statistical unmixing methods include, unmixing
by least squares, factor analysis and singular
value decomposition (Malinowski, 1991; Settle and
Drake 1993). By comparison, unmixing by
subspace method does not assume a linear
statistical model.

2.2 The Principle of subspace method

The basic idea behind the subspace method is
that the class spectral vector lies mainly in a small
class specific subspace instead of within the entire
dimension of the spectral space. If the class
subspace is determined from the training sample
of each class, class membership values can be
calculated by the projection of the mixel
observation spectral vector from the corresponding
subspaces from which the training samples were
drawn(Watanabe 1969; Kohonen 1977).

There are 3 ways of calculateing the subspace in
the subspace method. These are  algebraic,
statistical and learning subspace method (Oja,
1984). In this paper, a statisitical subspace method
called CLAFIC(CLAss-Featuring Information
Compression) algorithm is used. This method is
known to be fast and effective in the case where
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the volume of training data is moderate.

2.3 Subspace determination by enhanced
CLAFIC method

The CLAFIC algorithm determines the class
subspace in order to maximize the projection of the
class vector on the corresponding class subspace.
However, by maximizing the projections for all
classes at the same time, the separation between
the similar classes decreases.

In order to avoid this drawback, we have
employed the Enhanced CLAFIC algorithm which
maximizes the projection on the class subspace to
which the training vector belongs and also
minimizes the projection on the other subspaces at
the same time. In the following, the Enhanced
CLAFIC algorithm is described.

In the enhanced CLAFIC method, the class
subspace L@ which corresponds to a land cover
classesw(@) (I=1,...,.K) , is determined so as to
maximize the expected projection of vector x which
belongs to the classw@) . It also minimizes the
expected projection of vector x which belongs to

the other classes is w® ( #1 ). The problem here

is to determine the subspace L to satisfy these
conditions at the same time as formulating the
next minimization problem.

X
Y E(x'PPxixe o)~ E(x'PPxixea”) @)

i
j=!

where P is the projection matrix to the L& .

The first term of equation (2) is the expected
projection of sample vectors which do not belong to
the class w(i), and the second term is the expected
projection of vectors which belong to the class wii).
By minimizing term (2), we can determine the
subspace L which minimizes the first term and
maximizes the second term of (2):

- Projection matrix BP9 is expressed using

orthogonal normal bases {us® ,...,upe @ | of

subspace L@ as

)

O = § 0,0
P —iu,( u!

k=1

By substituting equation (3) into (2) and
rewriting (2) using base vector ux® (k=1,...,p®),

(7 ()
iSE((x’uf)

Ylxe co“’)~iE((xfu;“ Yixea®) (4)
i k=1 k=1
j=1
Calculating the expectation first, (4) becomes,

X ) o}

ZSL"((!)QU)“I&:) —Sui»‘)Q(l)u;l) (5)
o= o

J=l

(3
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where, Q@ is the correlation matrix of class w(z)
which is defined as

O =Fx{|xe af’) : (6)
By combining (5) with the normal condition of

bases {wi® ..., upey @ | |

Wil =1, k=1,..,p? )
Using the Lagrange multiplier method,
minimization of (2) is transformed to the

minimization of next term (8)
() ‘ol

gu(t)‘(ZQO) Q(t))u(l) i(/l(l) (t)’ (t) (8)

J#i
Jj=1

Taking the derivative of this term with respect to
the base vectors wx® (k=1,...p% ), we obtain
necessary condition for minimizing solution.
K
(X0 -0™)uf’ = 2u , k=1,..,p° 9
i
From equation (9), it is know that the solution
base vectors wx® (k=1,..,p% ) of L® is the eigen
vectors-of the next matrix.
K

0= 0"-0° (10)
J#
j=1

In addition, setting the 1¢4 eigen value of Qas A

19, (8) becomes
4]

o} o)
S (t)’QLéi) — S a(z)ul(cx)'ul(ct) _SZ(’? (1 )

k=1 k=1 k=1

So, in order to minimize (8), we can select the
eigen vectors which correspond to the minimum
p? eigen values as the ortho-normal base of L& .
Here, the dimension p® of subspace is the
parameter to adjust the mean projection on the
classes.

Because the subspace L& is uniquely
determined from the base vectors ux® (k=1,...,.p® ),
the above procedure determines the subspaces to
minimize the enhanced CLAFIC criterion (2).

2.4 Unmixing by subspace method

Once the class base vectors uz® (k=1,...,p% ) are
determined as the eigen vectors corresponding to
the eigen values of correlation matrix, projection
matrix P9 is calculated from equation (3). The
length of the projection of the observed mixel
spectral vector x on the class subspace L& is
calculated as,

=§ oy (12)

k=1

x'PPx

This projection length expresses how much of
the mixel vector belongs to the class w@. By a
natural extension of the membership values, we
interpret this projection as a measure of the class
component contained in the mixel vector and have
defined the unmixing in each class as the
projection on the class subspace calculated by (12).

3. UNMIXING EXPERIMENT USING CASI
IMAGE

In order to check whether the unmixing by
subspace method works effectively for hyper
spectral images, we have conducted an unmixing
experiment using a 288 channel CASI (Compact
Airborne Spectral Imager) and compared the
result with conventional statistical unmixing
methods.

3.1 Study site

The spectral image used for our analysis is a
CASI image acquired over the Kushiro wetland
located in the north east Hokkaido Island, Japan
(Figure.1). The CASI spectral sensor can measure
a spectrum from 470 to 920nm with a 1.8nm band
width. The specification and the data acquisition
conditions for the CASI sensor are shown in
Table. 1. The image was acquired at an altitude of
3,000m by Cesnad04 aircraft. The ground
resolution is longer (12.6m) in the aircraft flight.
Each pixel in the image contains the mean
spectral radiance of the ground target..

A selection of 7 bands from the original CASI
image (spaced every 40 channels) is shown in the
Figure.2. The first 4 channels are in visible
spectrum and the others are in near infra red. In
the center of Figure 2 is Lake Akanuma and the
artificial dike across the area is clearly visible.
There are various wetland vegetation in this study
area, especially reed, sedge and sedum is
overlapping and continuously distributed over the
sphagnum moss.

Before the analysis, the CASI image was
corrected for the geometric distortion caused by
the rolling of the airplane and the digital numbers
were converted to radiance values (Babey and
Soffer, 1993).

3.2 Unmixing

The spectral characteristics of 7 land cover
classes used for unmixing is shown in Figure 3.
All  the «classes are wetland vegetation
communities except for the road, and water classes.
The spectral difference between these vegetation
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classes is difficult to disecriminate using a common
remotely sensed image with a small number of
bands. So far, research in wetland vegetation
classification has not been intensively studied the
mutually overlapping and continuously changing
vegetation distributions due to the lack of
established method (Yamagata, 1995). However
from the wetland ecosystem conservation planning
and the global warming model perspective,
wetland vegetation classification has become an
urgent research theme.

3-2-1. Procedure of unmixing

The process of unmixing by subspace method

applied to CASI image is as follows.

1) Nine pure pixels (end member points) for
each unmixing class were selected as the
training data based on the knowledge of field
surveys.

2) Using training vectors, the class correlation
matrix @is calculated by equation (6).

3) The eigen value problem using the class
correlation matrix € is solved to determine
the subspaces for each class.

4) The projection of pixel vector of CASI image
on the class subspace is calculated using
equation (12) .

5) The projection (component of unmixing) for
each class was normalized to (0,1) and
mapped to an image.

3-2-2 Unmixing methods for comparison.

The following 3 conventional unmixing methods
are used for the comparison to the new method:

1) Least squares method : Assuming a linear
mixing model, area fractions of each class are
determined by a least squares model using
the training data.

2) Quadratic programming : Adding a condition
that the area fractions add up to 1 to a linear
mixing model, a least squares solution is
obtained by the quadratic programming
method.

3) Orthogonal subspace projection method :
First, the projection of the mixel vector onto
the orthogonal complement space spanned by
the class vectors of the other classes is
computed. The inner product of this projected
vector and the class vector is calculated
(Harsanyi and Chang, 1994).

3-2-3 Results of unmixing.

The result of unmixing by the subspace method
applied to the CASI image of Kushiro mire is
shown in Figure 4. The result of unmixing by
conventional least squares, quadratic

programming and orthogonal subspace projection

methods are shown in Figure 5, 6 and 7

respectively. Here the unmixed vegetation classes

are Yoshi (Phragmites.: Reed), Hannoki (Alnus.:

Alder), Mizugoke(Shagnum.. Moss), Isotsutsuzi

(Ledum.), Suge(Carex.: Sedge).

By comparing the quantitative classification
accuracy of unmixing by the subspace method
with the other methods, and investigating the
correspondence between the actual vegetation
distribution from field surveys, the following
results were obtained:

1) In figure 4, it is seen that the subspace
method highlighted the reed contaminated
with sedge as Sedge class.

2)  With Sedge class, by comparing figure 4 and 6,
subspace method delineated ‘accurately the
ground pattern of sedge class as well as
quadratic programming.

3) Only quadratic programming (Figure 6)
delineated the Moss and Ledum class that are
spectrally very similar (Figure 3). This result
may be due to the constraint of quadratic
programming, i.e. it tries to ‘enhance the
subtle spectral difference between classes to
increase membership difference.

4)  Alder class was accurately delineated only by
quadratic programming (Figure 6).

5 Water and Road classes were delineated
accurately by all methods.

3-2-4 Evaluation of unmixing methods

Based on the results obtained above, an
evaluation of the unmixing methods can be
summarized as follows!,

1)  Spectrally distinct classes such as road, Water;,
Sedge (Figure 3) are well unmixed by;
subspace method (Figure 4).

2)  Spectrally similar classes such as Ledum and
Moss (Figure 3) are unmixed sufficiently only
by quadratic programming (Figure 6).

3) The result achieved by orthogonal subspace
projection method (Figure 7) is entirely the
same as the least square method (Figure 4).

4) Quadratic programming (Figure 6) shows the
most accurate pattern of unmixing across all
classes, however it is the most time
consuming to implement. The subspace
method is a very fast algorithm owing to
many fast and stable eigen value problem
algorithms. Unmixing is performed by a

1 Here, these evaluation are all of qualitative nature.
This is because the evaluation of unmixing is
impossible unless we conduct a through survey of
continuous distribution of all vegetation types.
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simple inner product calculation which is
suitable for parallel processing.

4. SUMMARY

A new approach to the unmixing problem by
the subspace method is proposed and applied to
wetland vegetation using hyperspectral imagery.
Unmixing by the subspace method is superior to
conventional methods in numerical stability and
computation speed for hyper spectral imagery.
The results of the unmixing experiment showed
unmixing by subspace is spatially accurate
except for the classes that are spectrally very
similar. In the near future, the number of
sensor channels and the size of image area will
rapidly increase. The fast and stable unmixing
algorithm based on the subspace method will be
most useful for such data. Further, we need to
improve the separability between the spectrally
very similar classes by developing the present
approach.
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Specification of CASI| sensor

CH 40: 478 .5nm

Band width 1.8nm

Number of bands  288channels A i

Band range 410.3-923.7nm : : , cH 80 349 :5am
Image size 39pixel 489line ‘ ERTeEy 7 v ,
Dynamic range 12bit

CH 120: 620 7nm

Image acquisition condition

Altitude 3000m
Velocity ‘ 200km/h
Ground resolution 3.7m (along swath)
12.6m (along flight)
Observation date 31 Aug 1993
Observation time 11:25-11:30am
Weather Fine

CH 280: 909.2nm

Table 1: Specification of CASI image acquisition Figure 2: Seven sample channels from the CASI
image for Kushiro wetland.

- e “ 8
&
N ' T
S 1 g
f/\/ - o
NOTTAIDO ESLAXD / § 3
T Sy
\ g
€
S s
\ :g 3
'\.Q 5 ;E?
- T 2o
)
= =8
Q e =
- I © g
e ¢ LY
~. éfﬁ i @
2 <233 5
. S \< ‘&%' g‘x 8 wg
“TACIFIC OCEAN ‘\4& \\ ZZ %E% " °’§
~- | P73 8 ®
— ] [1T] =3
. . | § (E T
T 1
< ~ © @ © < N ©

Figure 1: Location map of Kushiro wetland (t718/2v Wi/ M) SouEIPEY

786
International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B7. Vienna 1996




Hamnoki

Road Road

Figure 4: Class unmixing derived from the Figure 6: Class unmixing derived from a
subspace method, Kushiro. quadratic programming method, Kushiro.
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Figure 5: Class unmixing derived from a least Figure 7: Class unmixing derived from
squares model, Kushiro. orthogonal subspace projection method, Kushiro
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