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ABSTRACT

In this paper we present a novel method for mixed pixel classification where the classification of groups of mixed pixels is
achieved by using robust statistics. The method is demonstrated using simulated data and is also applied to real Landsat TM

data for which ground data are available.

1 INTRODUCTION

The problem of mixed pixel classification is a major issue
in Remote Sensing and Geography and many approaches
have been developed to deal with it [Adams et al., 1986,
Foody et al., 1993, Lennington et al., 1984, Li et al., 1985,
Marsh et al., 1980, Settle et al, 1993, Smith et al.,1990]. In
the past we addressed the problem of mixed pixel classifica-
tion when whole regions of mixed pixels have to be classified
by treating the distribution of pixels in each region as a ran-
dom distribution [Bosdogianni et al., 1994]. In this work we
address the same problem but in a way that is applicable to
cases that our previous approach is unreliable, namely when
outliers are present.

The motivation of our work is to monitor burned forests for a
few years after the fire so that the regeneration processes can
be evaluated. In particular, we are interested in assessing the
danger of desertification conditions ensuing in the site of a
burned forest in the Mediterranean region. If the forest does
not show signs of recovery a couple of years after the fire, it
probably has to be artificially re-forested to prevent further
erosion. Quite often, different types of vegetation grow in
a burned region. It is usually the case that this new vege-
tation presents a deterioration of the quality of the flora of
the region. The main type of forests that are common in the
Mediterranean region consist of aleppo pine (pinus halepen-
sis). Thus, for the purpose of our work, we are interested in
assessing the degree of presence of three classes in a region:
aleppo pine, bare soil and other vegetation, using Landsat
TM images.

There is a major problem, however, when one deals with real
data: The data tend to be very noisy and inaccurate. The
statistics computed from them tend to be distorted and it
is difficult to obtain consistent results. Thus, a more robust
way of solving the problem is needed.

2 THE PROPOSED METHOD

In the linear mixing model adopted here, it is assumed that
the pixel value in any spectral band is given by the linear
combination of the spectral responses of each component
within the pixel, so the model can be expressed as:

w=ax + by + cz

ey

where w is the known spectral reflectance of a mixed pixel,
z, y and z are the known spectral reflectances of the three
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possible cover components within the mixed pixel and a, b
and ¢ are the proportions for each component contained in
the mixed pixel that have to be estimated.

If we consider again the linear mixing equation mentioned
above, we see that it actually is the equation of a hyper-plane
in luminance space where we measure one type of luminance
along each axis. What we are interested in identifying are
the parameters a, b and c for this plane. The method usually
used for this purpose is that of least squares fitting. It is
well known, however, that the method of least squares is
particularly sensitive to outliers. What we propose in this
paper is the use of Hough transform to identify the best values
of a, b and ¢. Hough transform is known to be a robust
technique which can tolerate large amounts of outliers and
still produce good results. In its most commonly used form it
is used to identify straight lines in images, but more generally
Hough transform can be thought of as a transformation into
the parametric domain where we seek to identify sets of real
data that indicate the same values of the parameters for the
parametric hyper-surface they define.

In our case this hyper-surface is a plane defined in the 3D do-
main (z,y, z), which is parameterised by different values of
w. Thus, our method consists of the definition of an accumu-
lator 3D array defined in the parametric (a, b, c) domain. For
each quadrupole (z,y, z,w) we have a different plane defined
in the (a,b,c) domain. The surface of this plane intersects
various cells of the accumulator array the occupancy number
of which is incremented by 1. When all possible quadruples
of the data have been considered, the highest peak in the
accumulator array defines the best values of the mixing pa-
rameters a, b and c. In reality, of course the problem is even
simpler than that, because we know that the values of these
parameters have to sum up to 1, so we can eliminate the
third one in terms of the other two and the finear model of
equation (1) now looks like:

w—z=(@—z)a+(y—2)b 2)

Then our accumulator array is only 2D and it can be sampled
with sufficiently high accuracy. The next step in our optimi-
sation procedure is to estimate the bin size in the accumulator
space for the two parameters a and b. In our applications we
do not really need to know the values of @ and b to better
than two significant figures accuracy, so the size of our accu-
mulator array will not be larger than 100 x 100, but generally
it will be a lot smaller.
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In the above expression x, y and z are the reflectances of pure
classes. Due to intraclass variability, however, each of these
variables can be thought of as a random variable distributed
according to some distribution, which given enough data, can
be modeled parameterically. As the reflectances of the pure
classes that enter into equation (2) are drawn from these
distributions, it is obvious that w is expected to have its
own variability, and that even if we have an exact value for
it, parameters a and b cannot possibly be estimated with
accuracy higher than the accuracy dictated by the intraclass
variability of z, y and z.

We can better explain that by realizing that a given re-
flectance w of a certain mixed pixel can be created by more
than one combinations of values z, y and z, all of which could
be legitimate reflectances of the corresponding pure classes.
Therefore, the values of a and b we find must reflect this
uncertainty. Thus, the bin sizes we have to use in the ac-
cumulator array have to reflect the uncertainties in z, y and
z.

When we solve (2) for a, or b we get:

0 = w—z— by — 2)
T—z

b = w—z—a(x — z)
y—z

The standard error for a and b can then be computed by:

da da da
Aa-aTA+ayA+azAz
ob
A = |22 A +'~ Az+l6'Az

Thus the standard error for a and b turns out to be:

Aa = ,——(—L———}Ax+i IA +’b+a lAz
X — zZ €r —

Ab = A:c—l—i b +‘b+a_1'Az
Yy— 2z -z y—z

Note that a and b are non-negative numbers, while a+b < 1.
If for simplicity we consider that «, y and z vary within the
same range, i.e. if we assume for the moment that Az
Ay = Az = o, we can see that the uncertainty in a and b is:

Aa

Ab 3)

The above assumption is clearly an oversimplification as there
is no reason to expect that the reflectances of each pure class
due to intraclass variability vary within the same range of
values. We may say that for a conservative estimate of the
error in the parameters we shall take all these ranges of the
reflectances of the pure classes to be equal to the largest one.

For multiband data we shall have different ranges of the re-
flectances of the pure classes for each band. As we want to
combine the data from as many bands as possible in order to
estimate the mixing proportions, we must have accumulator
arrays that are compatible with each other. For this reason,
when we create the accumulator array for a certain band, we
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do not use equations (3) to decide the size of the accumu-
lator cells but we rather use equations (3) to distribute the
vote of each possible set of reflectances in a number of fine
cells. That is, we set up an accumulator array which has the
finest resolution we desire, say 100 bins along each of the
two axes. Let us say that from equations (3) we find that
in this particular band Aa ~ n and Ab ~ m where n, m
are some integer numbers. As we form the accumulator array
then, when we find a particular set of (a,b) values, instead
of incrementing by 1 the value of the cell that contains that
value, we increment by ﬁ the values of n x m cells that
form a rectangle around the (a,b) value. This is equivalent
to a Hough transform with distributed voting and a “top hat”
kernel. At the end we sum up all the accumulator arrays that
have been created from the different bands.

3 TESTING THE PROPOSED METHOD WITH
SIMULATED DATA

Our method is at first assessed using simulated data to repre-
sent the pure and the mixed classes. Three distributions are
artificially created to represent the three “pure” classes e.g.
classes X, Y and Z , which are assumed normally distributed
in each band. Next, a mixture distribution was created, from
the three pure distributions with known mixing proportions.
Finally, some outliers were added to this mixed distribution.

We represent each distribution by a set of points and we try
to estimate the proportions of the classes in the set of mixed
pixels. The sets used to represent the “pure” classes are the
same for all the experiments, described below and are plotted
in Figure 1. The three pure classes were generated using
the same covariance matrix. Each set consists of about 30
samples. The proportions used ‘to create the mixed sets are
a = 30%, b = 60% and c'= 10%. Only two bands were used
for the proportion estimation. The values of Aa and Ab were
found to be 5 and 11 for the first band and 10 and 11 for the
second respectively:

30

30 40 s0 &0

O oo Class X A A AClass Y 4+ 4+ + Class Z

Figure 1: The sets used to represent the pure classes.

The parameters that vary in the following experiments are:
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the type of outliers, the number of outliers and the posi-
tion of outliers added to the mixed distribution. We can
distinguish two main types of outliers, the ones that follow
a certain pattern e.g. a cluster (coherent outliers) and those
that are positioned in random places (random outliers). The
influence of the outliers depends on their distance from the
mixed distribution, so various distances will be examined to
demonstrate how they will affect the obtained results. We
will examine how many outliers the method can tolerate.

The performance of the Hough transform method will be
compared with the solution obtained by the least square error
method, where the mean of each distribution is computed and
used as a mixed pixel or as an “endmember” in the classical
unmixing approach.

3.1 Coherent outliers.

The outliers of this type tend to create clusters in an arbitrary
distance from the mixed distribution. Such outliers are shown
in Figure 2. Outliers that are placed too close to the distri-
bution do not create much, if any, distortion to the obtained
results, while outliers placed too far away are very unlikely to
be present in real applications.
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Figure 2: Outliers placed on a given distance (3, 6 and 9
times the standard deviation) from the mixed set.

However, distant outliers may be present in the mixture dis-
tribution due to the existence of another class in the distri-
bution, that we have no data to describe it. At first we will
consider a fixed amount of outliers (e.g. 10% of the given
set) and we will place the cluster of those outliers in different
distances from the mixed distribution. The unit used to ex-
press these distances is the standard deviation of the mixed
distribution, which in these experiments is rather tight. The
standard deviation of the cluster of outliers will be half the
standard deviation of the mixed set. Then we will examine
different number of outliers placed at various distances. The
results obtained from this experiment are shown in Table 1.

From Table 1 we can see that estimates of the mixing propor-
tions of the Hough method are not affected by the outliers.
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’ Dist ] Out || Hough i LSE ]

[ al%) [ 6(%) [ c(%) [[ a(%) T 5(%) [ c(%) |
3 10% 27 60 13 31 59 10
6 - 27 60 13 32 58 10
9 - 27 60 13 34 54 12
3 20% 27 60 13 33 56 11
6 - 27 60 13 23 63 14
9 - 27 60 13 19 64 17
3 30% 27 60 13 24 63 13
6 - 27 60 13 20 64 16
9 - 27 60 13 14 66 20

Table 1: Effect of number of outliers in the mixed distribution.
Mixed set composition a = 30%, b = 60%, ¢ = 10%.

The LSE method though seems to be affected, as it was ex-
pected, and its performance deteriorates as the outliers were
placed further away and increase in numbers.

If the cluster of outliers is within the convex hull defined by
the “pure” class sets, then these outliers may indicate that
the mixed set is not actually homogeneous as assumed so far,
but patchy and the outliers in this case represent a patch of
another mixed area with different composition. In this case
it would be interesting to be able to identify the two mixture
compositions. In order to achieve this, we will examine the
second significant peak in the Hough space as well.

For the next experiment we created a testing set that is com-
prised of two mixtures with different compositions. If the
mixture of outliers had similar composition to the one of the
mixed set, then it would have been very difficult to distin-
guish between them. That is why for the outliers mixture
only, compositions with different dominant class were exam-
ined. The original mixed set still had composition a = 30%,
b = 60%, ¢ = 10% as in the previous experiments. The re-
sults obtained can be seen in Table 2. For this experiment
1/3 of the test set belongs to the outlier mixture. The second
peak in the Hough space is also examined.

' Outliers Mix ] Hough [ LSE ‘
| First Peak | Second Peak ||
30-10-60 32-60-8 17-38-45 31-44-25
10-30-60 32-60-8 7-38-55 25-51-24
60-10-30 32-60-8 52-16-32 40-45-15
60-30-10 32-60-8 58-16-26 41-51-8

Table 2: Test set comprised of two mixtures 2/3 from a
mixture with composition (30% — 60% — 10%) and the other
1/3 (outliers) with varied composition.

As we can see in Table 2 the other peaks in the Hough space
may be used to identify sets of coherent outliers. Suppose
that we used only one band for the proportion estimation. If
the distribution of the mixed set is not very coarse in compar-
ison to the bin size used to discritized the Hough space, then
the corresponding points in the accumulator tend to confine
in a line. If we use in addition a second band, as is the case
here, the points of the mixed set in the second band tend to
give a different line that crosses the first line and the crossing
point will be the answer. These two lines are not equally im-
portant, depending on how separable are the classes in each
band and of course on the variance of the mixed set in each
band.

When we examine two different mixtures at the same time,
then we will generally expect to see four different lines that
intersect in four different points. For this case we visualise
the Hough space as shown in Figure 3 to check what is going
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on. If the mixtures have the same number of points then all
four intersection points are equally probable to be the right
answer and the result will depend on the position of each
mixture and the shape of that set. If the two mixtures are
not very separable then the corresponding lines will be very
close to each other and the corresponding crossing points
may be reduced to three, two or even one. In these cases
the mixtures are almost identical. If one of the mixtures has
fewer points than the other, the lines generated by it will be
degraded and the dominant mixture should be responsible for
the outcome.

Figure 3: The mixed set contains points from two mixtures:
half of the points belong to a mixture with composition 30-60-
10 and the other half to-a mixture with composition 30-10-60.
The lines were added to show the lines in the Hough space
of each mixture in each band. The four numbers indicate the
four crossing points and correspond to the following mixtures:
1 — (27-16-47), 2 — (12-49-39), 3 — (27-60-13), 4 — (47-
27-26)

3.2 Random outliers

This type of outliers does not form a coherent set and their
distance from the mixed set is randomly chosen in the range
between 0 and 12 standard deviations. Such outliers can be
seen in Figure 4.

In this experiment, for a certain number of random outliers, a
number of mixed sets were generated and tested. The error in
proportion estimation was calculated, and finally the average
and the standard deviation of the errors (given in brackets)
in proportion estimation based on 100 experiments are shown
in Table 3. The error in estimation of each proportion (i.e
proportion a) was calculated as error, = 100% '—‘1—"—;%1—', where
a is the estimated value for a and ap is the true value of a.

As we can see in Table 3 the Hough method performs very well
and remains remarkably stable throughout the experiment.
The LSE method seems to be affected by the outliers and its
performance vary depending on the position of the outliers.

Ironically, the more the outliers are and the more uniformly
distributed about the mixed distribution they are, the bet-
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Figure 4: Outliers placed randomly.

‘ Out }] Hough I LSE |
[ a T°b [ ¢ [ a T b [ ¢
10% ][ 10(0) [ 0(0) | 30(0) [ 5(4 | 3(3) | 21(i6)
30% || 10 (0) | 0(0) | 30 (0) || 8(4) | 4 (4) | 30 (20)
30% || 10(0) | 0(0) [ 30(0) [ 7(5) | 6(4) | 41 (34)
40% | 10(0) [ 0(0) | 30(0) || 9(7) | 5(4) | 3327

Table 3: Effect of random outliers in the mixed distribution.
Mixed set composition a = 30%, b = 60%, ¢ = 10%.

ter the LSE method will perform because the mean of the
mixture distribution will not be affected by their presence.
However, such an improvement in the performance of the
classical method is clearly artificial.

4 WHAT IF SITES OF PURE CLASSES ARE NOT
AVAILABLE?

Ideally, for pure classes we would like to use sets of pixels
representative of the pure classes extracted from the remotely
sensed image itself. However sometimes, especially if the
terrain tends to vary at smaller scales than the size of the
test sites, it is difficult to find homogeneous test sites that
belong solely to a given pure class.

A solution to this problem is to derive the attributes of the
pure classes from test sites for which ground measurements
are available [Pech et al., 1986] [Gong et al., 1994]. Accord-
ing to our model we have:

w = ar + by + cz (4)
We can make use of the Hough transform again to identify
the best values for z, y and z, if we consider that equation
4 is an equation of a plane in the 3D space (a, b, ¢), which
is parameterised by different values of w and we are inter-
ested in identifying the luminances z, y, z. In this case we
have a 3D accumulator array defined in the parametric (z,
1y, z) domain. We can then use the luminance values w of
the training sites, with the estimated (by ground inspection)
values of their mixture parameters, to identify values of (=,
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y, z) which can be considered to be the means of the cor-
responding pure classes. Clearly we must perform a different
Hough transform for each band. Since z, y and z are lumi-
nances, they can take integer values in the range 0 to 255, so
we have a 3-D accumulator array 256 x 256 x 256. Instead
of searching exhaustively for all possible combinations of z, y
and z we can select three samples from three different sites
at a time. Thus instead of computing one parametric plane
for a given w, we solve a system of three equations similar
to equation (4) for the values of z, y and z. Then only the
corresponding cell in the accumulator array is incremented.

After the training part of the classification is concluded, it
follows the testing part when we are going to use these derived
values for z, y and z to classify any mixed set. Therefore, we
need to know the intraclass variability in z, y and z in order
to calculate the bin size for a and b. The intraclass variability
can be estimated by examining the steepness of the peak in
the Hough space. Let us assume that for a derived triplet
(zo, Yo, zo0) we have a peak value fz; 40,20 In the Hough
space. Then at the point (0z, Yo, z0) we have:

-f(ro,yo,zo)

1
e 2

f(am Y0,%0)

Form the above we can derive o, and in a similar way o, and
o:. These standard deviations are likely to be different. In
such a case we use the biggest one to calculate the bin size
for @ and b from equations (3).

5 APPLICATION TO REAL DATA

Since the simulation results showed that our model performs
well, we then tested it with some real data. The aim was to
decide on the type of vegetation in an area located close to
Athens, the capital of Greece in the province of Attica. Four
test areas (Penteli, Pateras, Varnavas and Lavrio) have been
selected because there were forest fires in each of these areas
within the last ten years. The training site data used in this
work were collected by the Institute of Mediterranean For-
est Ecosystem - National Agricultural Research Foundation
(NARF) of Greece for evaluating the risk of desertification.

The primary vegetation in this study area is composed of
conifers, mainly Aleppo pine and a variety of shrub species.
So the vegetation cover is categorised in three main classes:
bare soil, aleppo pine and other vegetation. For training we
used different sites for which ground data were available. We
have no regions solely composed of one class so we derive the
spectral characteristics of the real pure classes from sites for
which we know their composition, using the Hough transform.

39 training sites were used for this purpose. The algorithm
was then tested on 14 sites which had not been used for train-
ing and for which the composition was known from ground
inspection as well. Two criteria were used to evaluate the ob-
tained results. According to the first criterion a classification
result is considered a “hit" if the dominant class is identified
correctly, otherwise we have a “miss”. The second criterion is
more strict, a classification result is considered a “hit" if the
dominant class is identified correctly with accuracy +£15%.
The results of the Hough transform were compared with the
results obtained by the Least Square Errors method.

In Tables 4 and 5 S stands for soil, AP for Aleppo Pine, V for
Other vegetation. The numbers are percentages of coverage
by the corresponding class. Under the heading “LSE” we give
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the results obtained by using the Least Square Errors. Under
the heading “Hough” we give the results obtained by using
the Hough transform. All the results presented in the fol-
lowing tables were calculated using only two bands, the ones
that give the maximum discrimination for the three “pure”
classes (in our case bands 3 and 5).

With the LSE method according to the first criterion 24 sites
out of the 39 were classified correctly and according to the
second criterion 18 sites out of the 39 were classified correctly.
Using the Hough model, according to the first criterion 25
sites were classified correctly, while according to the second
criterion we had 19 “hits”. The detailed results obtained for
these sites are shown in Table 4.

At the second stage of the evaluation of our method, we
tested our model using 14 sites that they had not been used
for the derivation of the pure classes. According to the first
and second criteria the LSE method classified correctly 5 sites.
The Hough model had 8 “hits” in accordance to the first
criterion and 6 "hits” according to the second criterion. The
detailed results obtained for these sites are shown in Table 5.

6 DISCUSSION AND CONCLUSIONS

The simulation results showed that the Hough transformed
method can tolerate large amount of outliers and still retain
an acceptable performance. So the Hough method seems
more attractive in terms of performance, but the price that
one has to pay is the increase in computational complexity.

The problem of exponential explosion of the number of
quadruples one can use has also to be considered. Indeed,
if each one of the distributions that represents a pure class
and the mixed distribution consists of 30 points, we have to
consider 30* possible combinations which is about 10° com-
binations. This is really the limiting factor in our approach:
It is not feasible to use it for large data sets or for many
“pure” classes. However, the method is not really meant for
farge data sets as it is only introduced for the case that the
datasets are not sufficiently large to allow reliable statistics
to be extracted from them.

The problem of multiple peaks in the Hough space when more
than the mixtures are present can basicly be tackled by con-
sidering pairs of equations and solving for a single (a, b)
and incrementing only one cell in the accumulator array at a
time. The problem of combinatorial explosion is dealt with
in [Kélvidinen et al., 1996]
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