Workshop Organization

The workshop was organized by the following Working Groups and Organizations:

ISPRS WG III/5 **Remote Sensing and Vision Theories for Automatic Scene Interpretation**

Chairs: B. Csatho, Byrd Polar Research Center, OSU, Columbus, OH, USA
D. Wang, Computer and Information Science, OSU, Columbus, OH, USA

ISPRS WG III/2 **Algorithms for Surface Reconstruction**

Chairs: A. Krupnik, Israel Institute of Technology, Haifa, Israel
C. Toth, Center for Mapping, OSU, Columbus, OH, USA

Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP)

B. Minster, Scripps Institution of Oceanography, La Jolla, CA, USA

Scientific Committee

B. Csatho, chair, Byrd Polar Research Center, OSU, Columbus, OH, USA
M. Hofton, University of Maryland, College Park, MD, USA
A. Krupnik, Israel Institute of Technology, Haifa, Israel
B. Minster, IGPP, Scripps Institution of Oceanography, USA

Published by

ISPRS WG III/5 **Remote Sensing and Vision Theories for Automatic Scene Interpretation**

Byrd Polar Research Center, OSU, Columbus, OH, USA

This compilation © 1999 by the International Society for Photogrammetry and Remote Sensing. Reproduction of this volume or any parts thereof (excluding short quotations for the use in the preparation of reviews and technical and scientific papers) may be made only after obtaining the specific approval of the publisher. The papers appearing in this volume reflect the authors' opinions. Their inclusion in this publication does not necessarily constitute endorsement by the editors or by the publisher. Authors retain all rights to individual papers.

Copies of this book are available from

RICS Books
Surveyor Court
Westwood Way
Coventry, CV4 8JE, UK

Tel. + 44-171-2227000
Fax + 44-171-3343800
www.rics.org.uk
Preface

Airborne and spaceborne laser ranging is a rapidly emerging technology for capturing data on physical surfaces. An ever increasing range of applications takes advantage of the dense sampling, the high accuracy, and the direct way to obtain 3-D surface points that characterizes laser ranging methods. The objective of the workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers was to bring together researchers, developers, and users of airborne and spaceborne laser altimeter systems, to present results, and to discuss issues related to deriving surface properties from laser ranging data.

The three-day event brought together 56 participants with different backgrounds, expertise, and affiliations. The interdisciplinary audience engaged in lively discussions with the 25 presenters of papers, ranging in content from theoretical and conceptual topics to applications. Nearly all presentations are contained in this volume, organized in the sequence of the workshop sessions. The workshop was hosted by the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, in La Jolla, California.

Originally, it was planned to include a synopsis of the discussion that took place at the end of the workshop. Although we took copious notes of the discussion I have decided against including a synopsis as it may not be relevant for readers who did not participate. The opinion expressed most often was to continue with this kind of workshop; and to establish test sites, conduct, and coordinate tests with laser ranging data.

I thank all authors for their very valuable contributions and all participants who contributed to the success of the workshop. I am sure the readers will find the proceedings a valuable source of information.

Beáta M. Csathó
Editor
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors/Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii</td>
<td>Workshop Organization</td>
<td></td>
</tr>
<tr>
<td>iii</td>
<td>Preface</td>
<td></td>
</tr>
</tbody>
</table>

OPENING SESSION

3 Photogrammetry and laser altimetry
Schenk, T.

13 Commercial development of airborne laser altimetry - A review of the commercial instrument market and its projected growth
Flood, M.

SESSION 1 FOREST TOPOGRAPHY AND CANOPY MAPPING I

23 Progress in LIDAR altimeter remote sensing of stand structure in deciduous and coniferous forests using SLICER data
Lefsky, M., D.J. Harding, G. Parker, W.B. Cohen and S.A. Acker

31 Interpolation of high quality ground models from laser scanner data in forested areas
Pfeifer, N., T. Reiter, C. Briese and W. Rieger

SESSION 2 GEOLOCATION OF LASER FOOTPRINT

39 Analysis of satellite laser altimetry range measurements over land topography using generalized attitude parameter extraction
Ridgway, J. R. and J. B. Minster

47 A novel approach for calibrating satellite laser altimeter systems
Filin, S. and B. Csatho

55 A new approach for matching surfaces from laser scanners and optical sensors
Habib, A. and T. Schenk

SESSION 3 SURFACE RECONSTRUCTION BY USING RETURN WAVEFORMS

65 Processing of shuttle laser altimeter range and return pulse data in support of SLA-02
Carabajal, C.C., D.J. Harding, S.B. Luthcke, W. Fong, S.C. Rowton and J.J. Frawley

73 Segmentation of laser surfaces
Csatho, B., K.L. Boyer and S. Filin

81 Application of the Shuttle Laser Altimeter in an accuracy assessment of GTOPO30, a global 1-kilometer Digital Elevation Model
Harding, D.J., D.B. Gesch, C.C. Carabajal and S.B. Luthcke

SESSION 4 COMBINED APPLICATION OF LASER SCANNING & PHOTOGRAMMETRY

89 Utilizing airborne laser altimetry for the improvement of automatically generated DEMs over urban areas
McIntosh, K., A. Krupnik and T. Schenk

95 Registration of airborne laser data to surfaces generated by photogrammetric means
Postolov, Y., A. Krupnik and K. McIntosh

101 Quality control issues of airborne laser ranging data and accuracy study in an urban area
Schenk, T., B. Csatho and D.C. Lee
SESSION 5 INTEGRATION OF LIDAR WITH OTHER SENSORS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Integration of high resolution multispectral imagery with LIDAR and IFSAR data for urban analysis applications</td>
<td>Gamba, P. and B. Houshmand</td>
</tr>
<tr>
<td>119</td>
<td>Integration of LIDAR, Landsat ETM+ and forest inventory data for regional forest mapping</td>
<td>Lefsky, M.A., W.B. Cohen, A. Hudak, S.A. Acker and J.L. Ohmann</td>
</tr>
<tr>
<td>127</td>
<td>Comparison of DEMs from STAR-3i interferometric SAR and scanning laser</td>
<td>Mercer, J. and S. Schnick</td>
</tr>
</tbody>
</table>

SESSION 6 RECOGNITION AND RECONSTRUCTION OF MAN-MADE OBJECTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>The use of laser scanner data for the extraction of building roof detail using standard elevation derived parameters</td>
<td>Chilton, T., J. Jaafar and G. Priestnall</td>
</tr>
<tr>
<td>145</td>
<td>Laser data for virtual landscape generation</td>
<td>Haala, N. and C. Brenner</td>
</tr>
<tr>
<td>151</td>
<td>The effects of LIDAR DSM grid resolution on categorising residential and industrial buildings</td>
<td>Jaafar, J., G. Priestnall and P.M. Mather</td>
</tr>
</tbody>
</table>

SESSION 7 MAPPING OF ICE SHEETS AND GLACIERS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>Application of aircraft laser altimetry to glacier and ice cap mass balance studies</td>
<td>Abdalati, W. and W.B. Krabill</td>
</tr>
<tr>
<td>167</td>
<td>Airborne laser altimetry over the central West Antarctic ice sheet</td>
<td>Blankenship, D.D., S.D. Kempf, D.L. Morse, M.E. Peters, R.E. Bell and R.B. Arko</td>
</tr>
<tr>
<td>169</td>
<td>Airborne laser profiling of Antarctic ice stream for change detection</td>
<td>Spikes, B., B. Csatho and I. Whillans</td>
</tr>
</tbody>
</table>

SESSION 8 FOREST TOPOGRAPHY AND CANOPY MAPPING II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
<td>Estimating individual tree heights of the boreal forest using airborne laser altimetry and digital videography</td>
<td>St-Onge, B.A.</td>
</tr>
<tr>
<td>185</td>
<td>Roads and buildings from laser scanner data within a forest enterprise</td>
<td>Rieger, W., M. Kerschner, T. Reiter and F. Rottensteiner</td>
</tr>
<tr>
<td>193</td>
<td>Laser-scanning for the derivation of forest stand parameters</td>
<td>Rieger, W., O. Eckmüllner, H. Müllner and T. Reiter</td>
</tr>
<tr>
<td>201</td>
<td>Design, capabilities and uses of large-footprint and small-footprint LIDAR sytems</td>
<td>Means, J.</td>
</tr>
</tbody>
</table>

209 Conference Program
215 List of Participants
219 Author Index