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ABSTRACT

Laser scanning systems provide raw surface points, that is x, y, z coordinates for each laser footprint. To obtain an explicit
description of the surface to be mapped, such as breaklines or surface patches that can be analytically described, the raw
laser surface should be segmented. The segmented surface is more suitable for further analysis, such as object recognition and
surface matching. However, the segmentation of laser surfaces is not an easy task. The error distribution is non-Gaussian,
more likely a thick-tailed distribution contaminated by outliers. Outliers result from laser reflections on object boundaries or
steep surfaces. The true underlying surface model is rarely known before hand and it might be different from the visible surface
since the laser energy can penetrate vegetation or water. We propose to use an autonomous, statistically robust, sequential
function approximation approach to segment the surface into surface patches that can be described analytically. Its core is
the Robust Sequential Estimator, a robust extension to the method of sequential least squares. Unlike most existing surface
characterization techniques, this method generates complete surface hypotheses in parameter space. Given a noisy set of raw
laser points, the algorithm first selects appropriate seed points representing possible surfaces. For each nonredundant seed it
chooses the best approximating model from a given set of competing models. With this best model, each surface is expanded
from its seed over the entire area to find all points of that particular surface. In the final step, the ambiguities are resolved and
the isolated points are removed. The end result is a set of parameterized surfaces and their boundaries. We work with two
models, planar and biquadratic, because they approximate most natural and man-made surfaces well. The segmentation may
be followed by the joint inversion of the laser waveforms over the given surface patch to refine and verify the surface model.
Synthetic and real laser surfaces are used to demonstrate the segmentation concept.

1 Introduction recommend this procedure as a part of a multisensor (e.g.,
laser, stereo, multispectral) object recognition process, that
Range information provides a basic, fundamental contribution includes the following steps:

toward the understanding and reconstruction of 3-D shape,

which is required for general purpose object recognition and e Preprocessing of sensory data, geometric and radio-
image understanding. The goal of segmentation is to make metric corrections.

surface properties explicit. Surface properties include explicit e Transformation of surface points measured by laser and
description of discontinuities, description of piecewise contin- stereo into a common reference system.

uous surface patches, and other surface properties, such as
surface roughness, and reflectivity. Segmentation also pro-
vides input for data fusion, object recognition and change

detection.

e Segmentation and feature extraction of surfaces and
imagery. Each data set can be processed individu-
ally. On the other hand it may be advantageous to
combine the data for providing an explicit descrip-

Surface segmentation algorithms have extensively being used
in computer vision (e.g., [Besl, 1988]). Segmentation orga-
nizes the surface points into spatially coherent surface prim-
itives by using low-level processes as well as generic informa-
tion. In this fashion a precise, general and compact symbolic
representation of the original point set is created without us-
ing high-level, object information. The various surface seg-
mentation approaches in computer vision have not yet fully
exploited in the processing Airborne Laser Ranging (ALR)
data. Here, usually data or application specific, often pro-
prietary data thinning and blunder detection procedures are
followed immediately by model based object recognition.

First we provide some background on surface segmentation
followed by specifics of the surfaces and laser point sets con-
sidered in ALR. Then a robust, sequential surface segmenta-
tion approach [Boyer et al., 1994] is presented in detail. We

tion of surface properties for example by classification
[Csathé et al., 1999]

e Grouping and model based object recognition.

N

Background on object recognition from digital
surfaces

2.1 Range image understanding in computer vision

The literature on automated surface model construc-
tion from 3D point sets contains two main paradigms
[Hoover et al., 1998]. In the mesh paradigm, a triangular-
patch or regular grid surface model is constructed from laser
points, followed by the selection of a subset of the vertices.
The selected vertices determine a polygonal surface which ap-
proximate the original data within predetermined error bars.
A variety of methods have been explored for the purpose of



simplifying surfaces. For a good overview of the topic the in-
terested reader is referred to [Heckbert and Garland, 1997].

In the Surface Adjacency Graph (SAG) paradigm, the points
are segmented into regions by fitting analytical surfaces to the
corresponding surface patches. An example of the application
of this paradigm is the region growing based on variable-order
surface fitting, such as the algorithm described in this paper.

2.2 Object recognition from laser scanning

Pre-processing, involving the computation of the laser foot-
print from the GPS, INS and laser range data, is usually fol-
lowed by thinning and manual editing to reduce the size of
the data stream and to remove the outliers. Then the cloud
of almost randomly distributed laser points is separated into
ground and non-ground returns by using low-level process-
ing, such as histogram thresholding, morphological filtering,
and the application of autoregressive integrated processes
([Lindenberger, 1993], and [Kraus and Pfeifer, 1998]). In-
stead of segmenting the whole surface into surface primitives,
the low-level processing is usually immediately followed by
model based object recognition and reconstruction of certain
type of objects, for example buildings (e.g., [Axelsson, 1999]
and [Maas and Vosselman, 1999]).

To facilitate the automation of the object recognition and
image understanding process many authors recommend the
inclusion of other sensory data into the process. The redun-
dant and complementary information from stereo photogram-
metry, multi(hyper) spectral imagery, and other sources can
be fused at the different points of the processing chain for
detection, and classification of features and objects, for sur-
face and objects reconstruction, and for error detection. For
example [Haala and Brenner, 1999] achieve automatic detec-
tion of topographic features by combining laser data and color
imagery in a classification step, and uses laser data and 2D
ground plan information to obtain 3D reconstruction of build-
ings.

3 Segmentation and object recognition for different
applications

An ideal segmentation would partition the surface points into
surface primitives without making any domain-dependent as-
sumptions about specific objects, object classes, or applica-
tions [Besl, 1988]. In reality, the selection of the best seg-
mentation algorithm is application dependent. The sensor
characteristics, type of the measured quantities, the spatial
distribution of the laser points, the object properties, the er-
ror distribution, and the purpose of the survey all should be
considered.

Algorithms using surface fitting work well when recognition of
man-made objects, such as buildings, roads, etc., is the major
goal. These are smooth and solid objects usually bounded by
planar surfaces. The texture of surfaces (for example tiles on
a roof, or vegetation on topographic surfaces) are treated as
additional random noise superimposed on the smooth surface.

Segmentation of natural surfaces, such as sea ice, ice sheet or
land may pose different problems. These surfaces are viewed
as a combination of deterministic and stochastic parts. In
many applications, for example in geology and glaciology, the
statistical character of the surface (the stochastic part), is
also a subject of investigation. Surface texture statistics, like
surface roughness or correlation length can be the basis of
segmentation. Alternatively they can be used as additional

Figure 1: Aerial photograph of ice sheet surface with superglacial
lakes. The elevation profile in Figure 2 is extracted along the
white line. Solid arrows marks lake boundaries and the dashed
arrow points to ripples.

clues for object recognition.

Consider for example the area of superglacial lakes and com-
plicated drainage patterns on the Greenland ice sheet (Fig-
ure 1 and Figure 2(a). Although surface fitting is the logical
solution for describing the overall shape, ice sheets are so
simple that most of the object types can directly be recog-
nized by using simple clues, such as roughness and slope.
Figure 2 illustrates how scale-space analysis of the elevation
profiles as well as its first and second derivatives renders the
lakes. Lakes are horizontal and smooth, therefore the deriva-
tives of the surface elevation are small (for example see the
lake in Figure 1 and Figure 2, between the solid arrows).
The ripple zones, that is the series of bumps contouring the
lake shores down-glacier (for example around dashed arrow
in Figure 1), have large surface roughness resulting large and
rapidly alternating derivatives (Figure 2(b)-(c)). To suppress
this fine scale information the elevation profile was smoothed
by convolution with Gaussian kernels of increasing width. The
second derivatives of the smoothed elevation profiles was in-
spected to select the best scale for rendering the lake bound-
aries (Figure 2(d)).

A somewhat related topic is the determination of surface
statistics from a set of laser points or laser waveform. For hor-
izontal, random rough surfaces where the roughness scale is
much smaller than the footprint, the surface roughness within
each footprint can be estimated from the pulse width of the
return waveform [Gardner, 1992]. This approximation is valid
for some natural surfaces, like sea ice and for large footprint
laser system (LVIS, ICESAT). For more complicated surfaces
the approach introduced by [Goff and Jordan, 1988] might
be followed. He modeled the ocean floor as an anisotropic,
zero-mean, Gaussian random field to recover second order
statistics, namely amplitude, orientation, characteristic wave
numbers and Hausdorff (fractal) dimension of seafloor topog-
raphy from Sea Beam (sonar) data.
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Figure 2: Object recognition from surface elevation and roughness
on laser altimetry profile in the area depicted in Fig. 1. Solid arrows
mark lake boundaries and the dashed arrow points to a ripple zone.
(a) Surface elevation from airborne laser profiling, (b) first, and (c)
second derivatives, and (d) second derivative of elevation profile
smoothed by convolution with a Gaussian kernel.

4 Error model of ALR

The 0.1-0.2 m accuracy of ALR provided by the
service providers [Flood, 1999] and investigators (e.g.,
[Krabill et al., 1995]) refers for flat or gently sloping surfaces,
low to medium flight height, and for objects with high surface
reflectivity. In this "ideal’ case, the height accuracy consists
of a 0.05-0.15 m fairly constant error from GPS and laser
ranging (for GPS baselines shorter than say 100 km), and an
error of ca. 0.5-2 cm per 100 m of flying height for typical
attitude errors and a scan angle of 30 ° [Baltsavias, 1999].
[Schenk et al., 1999] examines the resulting surface errors
for horizontal and sloped surfaces. His simple error analy-
sis demonstrates that the errors are complicated functions of
topography, flight direction and the systematic positioning
and attitude determination errors.

No comprehensive analysis has been attempted yet for quan-
tifying the error of ALR for complex, 3D surfaces. It is known
that larger errors tend to appear along vertical and steep ob-
ject boundaries since the same planimetric error manifests
in larger elevation error on steep slopes than on flat sur-
faces. There is also an increase in ranging error where abrupt
changes in elevation and surface normal occur within the laser
footprint. This error depends on several factors, such as the
ranging principle used by the laser system, the distribution
of the elevations within the footprint, and the background
noise. [Gardner, 1992] uses closed form equations of the laser
return waveforms to describe the increase of the ranging er-
ror on sloping or random rough surfaces caused by the pulse
broadening. His result is supported by the observations of
[Kraus and Pfeifer, 1998] who report that with increasing ter-
rain slope and roughness, the height accuracy deteriorates to
0.5-1 m for 1000 m flying height.

These results suggest that the surface error of ALR has non-

Gaussian distribution. Larger errors, possibly outliers are ex-
pected for example on steep slopes and along object bound-
aries.

5 Robust segmentation algorithm

In this paper we present an autonomous, statistically robust,
sequential estimator (RSE) approach to simultaneously pa-
rameterize and organize laser surfaces. Details of the proce-
dure, including the mathematical background, has been pub-
lished in [Boyer et al., 1994]. The approach is recommended
for the segmentation of noisy, outlier-ridden (not Gaussian)
laser points into smooth surface patches. Unlike most existing
techniques, this method creates complete surface hypotheses.

5.1 Mathematical model

We assume that surface elevations z; = (x;, y;) are measured
by ALR at n arbitrary locations. Then, a general linear re-
gression model fitting a (generally nonlinear) function of p
parameters can be written as:

zi = Ti101 + ...+ xipbp + € (1)

for ¢ = 1,...,n, where ¢; represents a disturbance (error,
noise) in the observation. For example, with p = 6,x;1 =
LTi2 = i, Ti3 = Yi, Tia = TiYi, Xijs = 25, Tie = Y;, and
with 61 = a,02 = b, and so on, we can fit a function of the
form:

fla,y) = a+ba+ cy + duy + ex® + fy° (2)

In matrix notation, eq. 1 is represented as follows:

z=X0+¢ (3)

where z is an n-vector of observations on the dependent vari-
able (elevation), X is an n X p matrix of observation on the
explanatory variable (the horizontal coordinates of the obser-
vations and their polynomials) having rank p, 8 is a p-vector
of parameters to be estimated (parameters of fitted surfaces),
and e is an n-vector of disturbances (errors in elevation)

Only planar and biquadratic surfaces can be fitted in the cur-
rent implementation of the algorithm. However, the algo-
rithm is general and can be, in principle, extended to any
number of parameters. Based on the arguments presented in
Section 4 we assume that the error distribution of ALR data
is non-Gaussian and contaminated by outliers around object
boundaries. Since heavy tailed error distributions are reason-
ably represented by a t(Student)-distribution, a t-distribution
having degree of freedom f and scaled by a parameter o was
chosen as a stochastic model.

5.2 Preprocessing of ALR data

The preprocessing involves the computation of the laser foot-
print position in a global, geographic coordinate system. De-
tails on how to establish the relationship between the laser
range and the attitude and position of the aircraft are given
for example in [Vaughn et al., 1996]. We omit here these
details and assume that the positions of the laser footprints
in a Cartesian coordinate system are made available for the
segmentation.

Interpolation The RSE algorithm like most other segmen-
tation algorithms has originally been developed for close-
range applications and it works on range images rather than a



cloud of 3-D points having no topological relationship. There-
fore the raw laser data should be interpolated into a regular
grid on the xy plane prior to segmentation. Owing to the
quasi random distribution of the laser points the interpola-
tion errors are usually large, especially near breaklines.

ALR data acquired by the Airborne Topographic Mapper con-
ical scanner [Krabill et al., 1995] at the Commission Il test
site in Ocean City, MD ([Csathé et al., 1998]) are used to il-
lustrate some of the problems (Figure 3). Figure 3(b) shows
the distribution of the laser points in 2D. The contour map
is created by using a TIN model based interpolation. In ad-
dition to the distribution of the laser points let us consider
the location of the laser system relative to the building. The
aircraft passed the building on its left, so the laser was firing
from the left producing illuminated footprints on the ground,
on the roof on the building and on the walls. Small segments
of two scans are marked by gray squares and circles in Fig-
ure 3(b). A few laser points are located on the wall which is
close to the sensor (left side in (b) and front of building in
(a)), and there is some occlusion on the opposite side (right
side in (b)). The distribution of the laser points on the near
side is quite irregular, probably owing to the irregular outline
of the building and the balconies (Figure 3(a)).

The surface depicted in Figure 3(c) is interpolated by using
minimum curvature spline interpolation. This method min-
imizes the total curvature and the surface is not allowed to
bend sharply. This results overshooting at corners or along
edges (Note the peaks around the roof of the building). Fig-
ure 3(d) shows the surface interpolated by using a TIN model
based linear interpolation. The TIN model provides a better,
but visually not very pleasing solution. The resulting triangles
give a tent like appearance, moreover many points interpo-
lated along the side of the building have large elevation errors
[Schenk et al., 1999].

5.3 The procedure

After the preprocessing and interpolation the data are seg-
mented by a robust sequential estimator (RSE) procedure.
The major steps of the RSE approach are summarized in
Fig. 4.

The algorithms first selects appropriate seed points that repre-
sent possible surfaces. For each nonredundant seed it chooses
the best approximation from the selection of planar and bi-
quadratic models, using a modified Akaike Information Crite-
rion. With this best model, each surface is expanded from its
seed over the entire image; this step is repeated for all seeds.
The most significant and novel features of the algorithm, the
seed selection, model choice and expand operations are em-
bedded in a loop. The procedure starts with stringent criteria
for smoothness and minimum size of the seed regions and the
thresholds are decreased in every iteration. The seed selec-
tion stops when all data is assighed to at least one surface.
The remaining steps of pruning, removing and filling are sim-
ple postprocessing heuristics. The procedure ends with or-
ganizing the regions into a complete, non-ambiguous scene
description.

5.4 Seed selection

Ideally, seed regions are selected within every independent
surface. Redundant seeds increase the computational bur-
den and risk of over segmentation, while missing seeds could
leave surfaces unmodeled. Surface fitting for region growing
starts in every seed region. There are different approaches for
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Figure 3: Interpolation of laser points. (a) Photograph of the
building, (b) Contour map of the building from laser points using
TIN model based linear interpolation, square and circle mark laser
footprint belonging to the same scan line, spiral shows the perspec-
tive center of the photograph in (a), (c) interpolation of laser data
by minimum curvature method, (d) interpolation of laser data by
linear interpolation of TIN model.
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Figure 4: Block diagram of complete robust surface perception
scheme

seed selection. For example [Besl, 1988] extracts connected
regions from the HK-sign map (mean and Gaussian curva-
tures), and erodes these regions until sufficiently small regions
remain. By a seed point, we mean the center of the seed win-
dow. In the RSE approach, first simple 2D edge detector is
used to locate smooth regions. Points which are centers of
the largest, contiguous regions, are identified. Finally, redun-
dant seeds are eliminated. The procedure is implemented in
a loop, starting with stringent criterias for smoothness and
minimum size of smooth regions. These thresholds are de-
creased in every iteration. Seed selection stops when all the
data have been covered by at least one surface, except for
isolated singletons and pairs, or when no smooth region left.

5.5 Choosing best approximating model

The next step is to choose the best approximating model from
planar and biquadratic models for each seed point. In this
subsection first the robust M-estimator, the Robust Sequen-
tial Estimator (RSE), and the information theoretic model se-
lection is introduced briefly followed by the description of the
procedure used for selecting the best approximating model.

Robust M-Estimator Robust estimators are more efficient
(lower variance) than least squares (LS) if the errors are not
normally distributed, as is the case in laser scanning. They
are only slightly less effective than LS if the error has normal
distribution. We use a maximum likelihood (M)-estimator
as a robust estimator for the t distribution error model that
we assume for the ALR data (Section 4). Unfortunately, the
direct evaluation of maximum likelihood estimates from non-
normal distributions becomes quite complicated. Therefore,
estimates are obtained by using iteratively reweighted least
squares (IRLS). Let p(e;) be any differentiable error density

function which can be written in the form
_ €;
plei) oo l9{(;)2} (4)

where o is the scale parameter, g{.} denotes a functional
form, and ¢; = z; — Zj Ojxz; 5 is the " actual error from

eq.1. After computing the log-likelihood for  and o we get
a set of nonlinear equations. These nonlinear equations can
be solved using IRLS. Rewriting the equations in matrix form

X"W(z-X0)=0 (5)

where W is a diagonal weight matrix whose elements depend
on the residuals, since

*Q[M%—‘g(@]g:(ei/a)2 (6)

w; = wi(0,0°) =
The resulting iterative scheme, after simplification, is given
by

ék = ék_1 =+ (aTTWk_1X)71XTWk_1(Z — Xék_1) (7)

For a t distribution having a degree of freedom f and scaled
by a parameter o

glei/o)?) = [1+ & /(fo2)) V2D ®)

Substituting this expression for g in (6) yields the individual

weights:
1+ f
Wy = —————— 9
RN YR ©
where the residual r; = z; — Zj éja:z',j. We use s in this
expression to distinguish the (unknown) true value of the scale
parameter, o, from an estimated value, s, used in computing
the weights. These weights are then assigned to the diagonal
elements of the weighting matrix, W, and (7) is used to
update the parameters.

Robust Sequential Estimator (RSE) The RSE is a robust
extension of the sequential least squares (SLS) estimator.
The RSE can be applied to any linear regression model of
the type defined in (1). In the SLS algorithm, equal weights
are assigned to every data point, while the RSE differentiates
between valid data and outliers through its weighting mech-
anism. That is, the RSE rejects any data point which fails to
qualify as possibly valid for the current surface model. The
RSE does not remove these data points from the data set en-
tirely - just from the current surface. The estimation starts
from an initial robust estimate of the surface parameters in
a small neighborhood centered around a seed point. The
parameters of the fitted surface are computed by IRLS with
errors assumed to be t distributed. The RSE then adds the
remaining data sequentially, assigning weights to each new
observation based on the previous surface estimate.

Information theoretic model selection We have to choose
the best approximating model from a given set of models be-
fore we can apply the RSE. Since models with more parame-
ters fit the data better, the selection criteria should balance
complexity with goodness of fit. The Akaike Information Cri-
terion (AIC) is a powerful tool for choosing among differ-
ent regression models. The asymptotically consistent AIC
(CAIQ)is a generalization of the Akaike Information Criterion
(AIC) by making it asymptotically consistent and by penaliz-
ing over parameterization more stringently to avoid modeling



the noise. If we assume that the errors in the general regres-
sion model are independent and identically t-distributed, the
CAIC is given by

CAIC = =2(1+ f)/2 ;wilog[l + %] + p(log(n) + 1)

(10)
where the first part describes the log-likelihood of the model
with p parameter, log(n)+1 is the cost of fitting an additional
parameter, n is the number of observations, and w; and r;
are the corresponding weight and residual for the ith obser-
vation. For a fixed data set it is easy to compare the CAIC
for different fitted surfaces. However, with a sequential ap-
proach the data set is not fixed. Since CAIC assumes a fixed
data set, we start the RSE algorithm in a local fixed win-
dow, and compute the parameter vector using IRLS. From
this estimate, we compute the initial CAIC. Then the RSE
expands the initial window, until it encounters outliers. To
compute the modified, asymptotically consistent Akaike in-
formation criterion (MCAIC) the CAIC is normalized by the
total number of observations in the final, maximal window
for each model:

MCAIC = K—m”m]lVOAI ¢ (11)

where K is an arbitrary constant, we use the number of points
in the initial window.

To select the best candidate model for each candidate model
the following procedure is used:

e For each seed point robust parameter estimates are
obtained for each candidate model.

e The initial value of CAIC is computed by using (10).

e Points are added sequentially by expanding the initial
window in four direction, updating the parameter esti-
mates by using RSE. A point is considered as outlier if
its weight falls below a threshold. If the ratio of out-
liers to total data points exceeds 75 percent on a side,
the window is not expanded further in this direction.

e For each model and its resulting window, the MCAIC is
computed by using (11). For this seed, the model min-
imizing MCAIC is selected as the best approximating
model.

5.6 Postprocessing

Expand The expand procedure is employed both as part
of the seed selection-model selection loop, and to establish
the final model parameters and the set of points supporting
that particular parameter vector. Once we have the best
approximating model for a surface (seed), we use this model
and let the surface grow over the entire scene. This process is
repeated for all surfaces at the appropriate seed points using
the best approximating models as obtained in the choose
step.

Prune The expand process may assign isolated points to a
surface. Those with fewer then 2 co-surface 8-neighbors are
assigned to the base surface.

Resolve For the end of the segmentation each laser point
should be assigned to one surface only. To resolve the am-
biguities a 5 by 5 neighborhood of each ambiguous point
is examined by calculating the average estimator weight for
each candidate surface. The surface yielding the maximum
average weight is selected.

Remove (re-prune) After the resolve step, some points
which were not isolated prior to resolution, may become iso-
lated. These points are removed by re-pruning.

Fill At this point the surface usually have pinholes where
points are assigned to the base surface within another surface.
This is the dual of the isolated point problem. The final
assignment of these points is based on their 8-neighborhood.

The final output of the segmentation is:

e 3D graph surface equations,
e 2D region boundary equations,
o fit error,

e other characteristics of surface patches.

5.7 Experimental results

Experiments on both synthetic data and real range imagery
are presented in [Boyer et al., 1994] to demonstrate the per-
formance of the RSE segmentation.

Figure 5-6 shows the result of one of these experiments. The
synthetic surface has two planar region with smooth tran-
sitions into a cylindrical joining region such that depth and
orientation is continuous everywhere (Figure 5(a)). Noise
and outliers were added to simulate a noisy set of range data
Figure 5(b). Surfaces with smooth joins are more difficult
to segment but the algorithms addresses this case reasonably
well. The recovered surfaces and the segmentation bound-
aries are shown in Figure 6.

(a)

Figure 5: (a) Smooth join surface and (b) surface contaminated
with added Gaussian noise and outliers



Figure 6: Recovered surfaces and segmentation (a) Planel, (b)
Plane2, (c) all three surfaces, (d) segmentation boundaries

6 Discussion and conclusions

Airborne laser scanning is an increasingly popular data acqui-
sition method for generating DTMs. It samples the surface
at high a density and the range measurements are very ac-
curate. However, the raw laser points are not a meaningful
description of the surface because the major surface charac-
teristic, such as breaklines, formlines, smooth surface patches,

and surface roughness, are not explicitly encoded. Surface
segmentation attempts to extract this information from the
cloud of 3-D laser points. We have proposed a region grow-
ing segmentation method that takes the stochastic nature of
laser points into account and it is robust regarding blunders.
We are currently extending the approach to process directly
irregularly distributed data sets in order to avoid gridding as
a pre-process.

Segmenting laser points into meaningful surface patches
would greatly benefit from additional information. Usually,
laser data sets consist of a (huge) list of 3-D points. It is
conceivable to record additional information, for example the
entire waveform of the returning laser signal, or the scene
brightness. Waveform analysis and analyzing scene bright-
ness could be incorporated into the segmentation process.

For region-growing segmentation to be successful, a suffi-
cient number of points per surface patch is required. This is
usually the case for airborne laser data sets. Since the seg-
mentation identifies smooth surface patches, breaklines and
formlines are defined by region boundaries. Sometimes, the
region boundaries do not determine breaklines well, however.
This is an inherent problem with laser data sets; the spatial
distribution of footprints may be considered a random sam-
pling as far as object boundaries are concerned. It would be
sheer coincidence if a footprint would coincide with an ob-
ject boundary, say a building outline. Even if it did we would
not know. If object boundaries are important for a particular
application, other sources but laser ranging may be required.
For example, stereo photogrammetry allows direct determi-
nation of 3-D object boundaries. Therefore, it makes sense
to combine the strengths of different sensors.
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