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ABSTRACT. A common assumption in processing large, or sometime small, sets of data is that 
correlations inside the data are either. This hypothesis on the observations isn't always true and could 
lead to wrong results (often the results seem better!). The correlation inside the observations is highlight 
through the computation of the autocovariance function 

1. INTRODUCTION 

Processing large, or sometime small, sets of data 
(observations) pose an interesting problem about the 
presence of correlations inside the data. Indeed when 
we apply a statistical procedure we suppose that 
observations are incorrelated. This hypothesis on the 
observations isn't always true and could lead to wrong 
results (often the results seem better!). 
The correlation inside the observations, or on residuals 
after the removal of trend with a deterministic model, 
is highlight with the computation of the 
autocovariance function. 
The autocovariance function takes into account all 
effects that aren't considered in the deterministic 
model and therefore they are treated as stochastic 
process. The autocovariance function give us the 
degree of correlation between the value (i.e. grey level 
of an image) in a point and the value to another point, 
related to the distance between the two points. In 
general nearly points have higher correlation with 
respect to points far apart. 
Before applying the algorithm to compute the 
autocovariance function it is needed to remove any 
trend, if it is present, inside the data, since they are 
assumed to come from a stationary and isotropic (for 
20 data) stochastic process. 

2. EXAMPLES (Crippa, Mussio, 1987) 

We have considered some data sets chosen in different 
fields: 

geodesy (GPS) 
satellite image (SAR, SPOT) 
digital aerial image (scanned aerial photo image) 
close range image (scanned or taken with CCD 
camera) 
numerical cartography (digitized map). 

We have taked the following examples: 
A session of GPS measurements (in this case we 
have applied a ionosphere correction) 
A portion of SAR filtered interferogram ( 400x l 00 
pixels) 
A portion of a SPOT image (200x200 pixels) 
A portion ofan aerial image (30lx301 pixels) 
A portion of close range image (200x200 pixels) 
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A digitized set of data in Lissone area (Italy) (we 
have chosen the points referred to buildings and 
urban streets). 

The GPS data come from measurements done in Noto 
(Italy), with Rogue equipment the data are stored in a 
file with RINEX format, the time interval between a 
two measures was 15 seconds. 
Inside the file of the measurements there was cycle 
slips than it is necessary to preprocess the file of 
measurements in the following way: 

extract from the RINEX file the measures: time, 
codes P, CIA and carrier phases Ll and L2 , this 
must be done for each satellite 
look for in the time serie the present of cycle slip if 
it is present cut the time serie 
apply to each time serie, without cycle slip, the 
ionosphere correction. 

The GPS session had 25 satellites, we present three 
different results of autocovariance functions: 

satellite 21 the autocovariance function doesn't 
shows correlation (fig. 1,2) 
satellite 6 the autocovariance function shows a 
weak correlation (fig. 3,4) 
satellite 12' the autocovariance function shows a 
strong correlation (fig. 5,6) 

Note that the satellite with strong correlation has a low 
variance (one order of magnitude) with respect to the 
other satellites (Tab. 1). 

Sat 21 Sat6 Sat 12 
No. obs 617 343 673 
average DI 6.566 0.972 12.124 
SQm 01 0.295 0.774 0.075 
average D2 9.831 1.438 19.923 
SQm D2 0.885 1.301 0.054 

Tab l - Average and sqm of the measurements. 

The autocovariance function has been computed on the 
data after an ionospheric correction. 

1 This satellite had some problem in the clocks 
equipment: this can be the reason of the high 
correlation. 
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Fig. 1 - Autocovariance function on sat21. 
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Fig. 2 - Autocovariance function on sat21. 
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Fig. 4 - Autocovariance function on sat6. 

Autocovarlance funcUon SAT& (measure 02) 
Correlation LAG• 15 sec 

~--------------------~ 
Urn• 

Fig. 5 - Autocovariance function on sat6. 
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Fig. 5 - Autocovariance function on satl2. 
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Fig. 6 - Autocovariance function on satl2. 

The SAR filtered interferogram (fig. 7) has been 
generated with ISAR packages. We have computed the 
autocovariance function on phases ( difference of the 
phases of the two SAR images) and the process 
parameter, which have been used, is the distance (on 
the interferogram image) between the phases 
(realization of 2-dimensional stochastic process). As 
we can see (fig. 8) the correlations between the phases 
are negligible for pixels which are about ten pixels 
apart, therefore the phase value in a point depends 
(statistically) of the phase values in a neighbour of ten 
pixel size. 

Fig. 7- SAR filtered interferogram 
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Fig. 8 - Autocovariance function on SAR image. 

A portion (200x200 pixels) of a SPOT image (fig. 9) 
has been processed, in this case we have computed the 
autocovariance function (fig. 10) on grey levels and 
the process parameter, which have been used is the 
distance between the pixels (realization of 2-
dimensional stochastic process). 
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Fig. 9 - A portion of a SPOT image. 
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Fig. l O - Autocovariance function on SPOT image 

A portion (30lx301 pixels) of an aerial scanned image 
(fig. 11) has been processed, in this case we have 
computed the autocovariance function (fig. 12) on grey 
levels and the stochastic parameter, which have been 
used is the distance between the pixels (realization of 
2-dimensional stochastic process). 
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Fig. 11 - A portion of an aerial scanned image. 
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Fig. 12 - Autocovariance function on SAR image. 

A portion (200x200 pixels) of a close range image 
(fig. 13) has been processed, in this case we have 
computed the autocovariance function on grey levels 
and the stochastic parameter, which have been used is 
the distance between the pixels (realization of 2-
dimensional stochastic process. 

Fig. 13 - A portion of a close range image. 
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Fig. 14 - Autocovariance function on SAR image. 

When the autocovariance function is computed on data 
distributed in a regular grid, (as it is the case with 
SAR, SPOT, aerial image and close range image) it is 
possible to use a fast algorithm which takes into 
account the high regularity of the data. 
We have extracted from a cartographic database two 
sets of digitized points, respectively referred to urban 
streets and buildings. For each set we have counted the 
points which fall in each mesh (class) of the grid 
superimposed on the area. Furthermore, we have 
surrounded the boundary of the classes in the area with 
a polygon. In this case we have computed the 
autocovariance function (fig. 15, 16) on the numbers 
of points which belong to a classe (frequency) and the 
process parameter, which have been used is the 
distance between the centres of the classes. 

Autocovarim,cei function on the hquency points in the classes 

Fig. 15 - Autocovariance for buildings. 
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Fig. 16 - Autocovariance for urban streets. 

J. CONCLUSION 
The aim of this work is to show that the hypothesis of 
independence of the measurements, in a set of data, it 
is not always true and this must be taken into account 
when the measures are treated with a statistical 
procedures. 
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For example when applying the least squares 
procedure to a set of measures (residual after a 
removing trend) it is need verify the hypothesis of 
indipendence for use a diagonal weight matrix. 
The presence of correlation inside the data can be a 
first alarm to verify the correctness of the functional 
model in the least squares procedures. 
A special remark concerns the use of the 
autocovariance function regarding to the map 
generalization. Indeed when two lines are distinct 
already at a distance lower than a high autocorrelation 
value (e.g. p = 0.5), the generalization could be done 
substantially without loss of information. On the 
contrary, when two lines are distinct only at a distance 
greather than a high autocorrelation value (e.g. p = 
0.5), the generalization should be done suitably 
selecting the most important features. 

APPENDIX IONOSPHERE CORRECTION 
ON GPS MEASURES2 

As just explained above in the GPS measures must be 
removed the ionosphere effects. In the follow we 
present the expression to achieve this goal: 
1) Ambiguity ofLl: 

NI = Cl - A1 *Ll 
(at first measure; used Pl when available) 
Ambiguity ofL2: 

N2 = P2 -A.i*L2 
(at first measure) 

where A1 and Az are the wave lengths of LI and L2 
GPS phase measures 
2) <l>1 = A1 *Ll + NI 

<l>2 = A2 *L2 + N2 
(<I> represent the distance station-satellite computed 
with phase measures) 

3) I1 = (<!>1 - <l>2)*f/ / (f/ - f/) 
12 = (<!>1 - <l>2)*f/ / (f/ - f/) 

where f1 = 1575.42 MHz and f2 = 1227.60 MHz are 
the frequencies of LI and L2 GPS phase measures 

4) 

5) 

Clcorrect = CJ • 11 
<l>1correct = <l>1 + I1 

P2correct = P2 • lz 
<l>2correct = <l>2 + 12 

D l correct = C l correct • <l> l correct 
D2correct = P2correct • <l>2correct 

The empirical autocovariance functions are computed 
over D 1 and D2. 
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2 This formulas have been given by dr. ing. Mattia 
Crespi ofD.I.T.S. - Univ. di Roma 'La Sapienza'. 


