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ABSTRACT 

This paper deals with the problem of external orientation of a mobile imaging sensor system. To this purpose an original method is 
suggested, using exclusively the points of an already existing numerical cartography seen on the images. The method is an 
alternative to that currently applied, based on the integration of GPS and INS facilities. 
To solve the image orientation in a dynamic way, the so-called "wave algorithm" (Wang, Schaffrin and Salychev, 1995), an 
advanced Kalman filter technique is applied; it belongs to the class of the extended dynamic linear models, the so-called "look 
ahead filters". 
The analytical model used considers the coplanarity equations, to solve the relative orientation of the sequential images, and the 
collinearity equations, to solve the external orientation of the sensor system. The motion of the vehicle is described by state 
equations defined by means of cubic spline functions applied to a set of points touched by the mote and acquired from the digital 
mapping. It is then possible to orient externally the images using exclusively photogrammetric observations and a wheel counter 
that measures the length of the course in function of image time acquisition. 
Using the wave algorithm makes it possible, in the space-time interval between two series of collinearity observations, to 
compensate systematic deviations locally defined by the state equation model. 

1. STATIC VERSUS DYNAMIC MODELS 

Any measurement process sequentially performed in some time 
intervals can be treated and adjusted either by a static or by a 
dynamic analytical model. 
For instance, a photograrnmetric survey is an image acquisition 
sequence where a lot of images are taken, in general, in 
different places and at different times. Since a biunivocal 
relationship exists between any image and its time of 
acquisition, the global orientation problem can be solved in a: 
• static way: when the images are treated together without 

considering acquisition time; 
• dynamic way: when the acquisition time is considered in the 

adjustment process by applying, for instance, the Kalman 
filter technique, widely used for the prediction of unknown 
quantities varying in time. 

1.1. Static Models 

In photogrammetry, two well-known linear models in the 
unknown image orientation parameters x are applied: 

1) GAUSS-MARKOV LINEAR MODEL 
• for observation equations: b =Ax+ v 

2) MIXED LINEAR MODEL 
• for observation equations: 
• stochastic prior information for s: 

b=Ax+Gs+v 
s = µ, +e, 

In any case two kinds of solution can be obtained: 

I) POST PROCESSING SOLUTION 
By a Global Least Squares Adjustment (Dermanis, 1990c), 
leading to: 
• the Best Linear Estimation BLUUE (Dermanis, 1990b) i of x; 
• the Best Linear Prediction BLUUP (Dermanis, 1990a) s of s 

for the mixed linear model. 

Considering the complete sequence of images together, a huge 
quantity of data must be handled. 

2) "REAL TIME" PROCESSING SOLUTION 
By a Sequential Least Squares Adjustment (Crosilla, 1989), 
leading to: 
• a real time solution, when only new observations are 

introduced; 
• an "almost real time" solution, when new unknown 

parameters are introduced. 
Unfortunately the latter is typical of a dynamic survey where 
new images introduce new unknown orientation parameters. 
Also this kind of solution is not efficient from the 
computational point of view because of the huge quantity of 
data to be handled. 

1.2. Dynamic Models 

Three different linear models can be considered, with 
increasing level of complexity, where the unknown x t varies 

in time. 

1) DYNAMIC LINEAR MODEL 

Is defined by three kinds of equations: 
• observation equations: 

• stochastic constraints, the so-called "state equations": 
X1 = <l>t-1 Xt-1 + µt 

• stochastic prior information for x 1_ 1 : 

With this model a real time processing solution can be obtained 
by a Least Squares Adjustment, in particular: 

• the Best Linear Prediction BLUUP l\, µ1 , e1~ 1 of v 1 , µ 1 ,e~. 1 ; 
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• the Kalman Filter Prediction it of xt. 

2) EXIBNDED DYNAMIC LlNEAR MODEL 
( so-called "look ahead filters", Schaffiin, 1994) 

Unlike the dynamic linear model, two sequential observation 
equations are concerned; the model is given for the times t=l 
and t=2: 
• observation equations: 

• state equations: 

• stochastic prior infonnation: 

b1 =A1X1 +v1 
b2 = A2x2 +v2 

X1 = <l>oJ:o + µI 
X2 = <l>1X1 + µ2 

i 0 = x0 +eg 

An "ahnost real time" processing solution can be obtained by a 
Least Squares Adjustment: 

• the Best Linear Prediction BLUUP v1, v2,µ1,µ2 , io° of 

v,,v2,µ1,µ2,e8; 

• the Kalman Filter Prediction i 1,x2 of x1,x 2 . 

The following condition is always satisfied (Schaffrin, 1994): 

MSPE{i1} = Qi\ :5: MSPE{i1} = Qi, 

3) WA VE ALGORITHM (Wang, Schaffiin and Salychev, 1995) 

This model belongs to the previous class of look ahead filters 
where a time cycle of measurements is considered together, 
with the peculiarity that the noise term µ t in the state equation 

is always equal to zero, except for the last time. In this way µt 

is not stochastic but deterministic and it must be estimated not 
predicted. 

The great advantage of a dynamic linear model is that the 
computational effort is much smaller than the static solution 
since only "few'' observations are processed. 
These models will be treated in detail in chapters 4, 6, 7; the 
observation equations (ch. 2) and the state equations (ch. 3) for 
a dynamic photogrammetric survey by a "mobile mapping 
system" (MMS) will be now considered. 

2. DYNAMIC SENSOR ORIENTATION FOR A 
PHOTOGRAMMETRIC SURVEY BY 

DIGITAL MAP POINTS 

The dynamic terrestrial survey is a methodology performed with 
a mobile unit equipped with suitable sensors which allow 3D­
positioning of the object. Its peculiarity is that the unit motion 
is detennined exclusively by INS systems and/or GPS receivers 
set on the mobile unit. 
An MMS is constituted by a van equipped with: 
• a differential kinematic GPS receiver (rover station); 
• a INS strapdown system (3 accelerometers and 3 ring laser 

gyros, RLG ); 
• a cluster of2+8 CCD cameras (and VHS cameras); 
• a workstation for the data control/processing. 
The analytical model used is the following: 
1. Application of a Kalman filter technique for the MMS 

motion definition; 

2. Determination of the position and the attitude of the digital 
sensor system stifily fixed to the mobile unit; 

3. 3D ablosolute positioning of the objects acquired by the 
oriented imaging sensors. 

From the geometrical point of view, to solve the 3D object 
positioning, the following model (El-Sheimy, Schwarz and 
Gravel, 1995) can be applied (see fig. 1): 

r; = rGPS/INs(t) + RGPS/INs(t)[SiR~~Sr{amera +a~INS] 

(1) 

cartographic 
reference 
frame 

object-point i 

Figure 1: Unified model for a georeferencing procedure 

where: 
ri is the coordinate vector of the i-th object-point in the 

cartographic reference frame; 
rGPStINs(t) is the coordinate vector of the GPS receiver/INS system 

in the cartographic frame (meastn"ed by GPS/JNS); 
RGPS/INs(t) is the rotaticn matrix between the GPS/JNS lxxiy frame 

and the cartographic frame (measured by the RLG); 
Si is the scale factor for the i-th object-point; 

R~~fs is the rotation matrix between the camera reference 

frame and the GPS/INS frame (known by the MMS 
calibration); 

r{amera is the image coordinate vector of the i-th object-point; 

a~;;,;1s is the offset vector between the camera frame and the 

GPS/INS frame (known by the MMS calibration). 

This paper proposes the alternative model, given by formula 
(2), to solve the object positioning by a photogrammetric 
procedure ( see fig. 2 ): 
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Figure 2: Alternative model for the georeferencing procedure 



The coordinates rknown point of some points, extracted from a 

digital map, are used to compute the external orientation of the 
cameras (rca,ncra and Rcarncra ). The coordinates ri of the i-th 
object-point, as for the model (I), are computed by 
photogrammetric intersection. 

2.1. Photogrammetric coplanarity condition 

Image at time t 

Figures 3 and 4: Coplanarity and collinearity condition 

Considering the vectors (see fig. 3): 

Xi =(Xi Yt f normalized image coordinates at time t, 

Xi+1 =[1<t+1 Y1+1 lr nonnalizedimagecoordinatesattime(t+l), 

ATt =[E1+1 -Et N1+1 -N1 Ht+1 -Htt relative translation 

between t and (t+l), 
the coplanarity condition: 

x;+1[AT1 A (AR1x1)] = 0 

exists for these vectors and must be satisfied for the relative 
orientation of two images. After some positions and passages 
(Crosilla and Visintini, 1997), this condition can be written, in 
compact form as: 

(3) 

where: 
X is a Nx9 matrix whose rows type are: 

'V· -[x· y. x· y· X· y· x· y· y· y· x· y· 1) 
A.l - lt+l 0 1t lt+J lt lt+l 1t+1 1t 1t+l 11 1t+l 1t 1t 

q is a 9-row vector obtained by stacking the columns of Qt on 

top of each other, where: 

<2t =[; 
-l\Nt 

Vector q contains the external orientation parameters of the 
images at different times. 

2.2. Photogrammetric collinearity condition 

Considering fig. 4, the collinearity equations for any time t can 
be written as: 

(4) 

with the well-known meaning of the different terms. 

In photogranunetry, the coplanarity condition (3) is applied to 
create the stereo models while the collinearity condition ( 4) is 
used to define a unique datum by fixing the coordinates of some 
points ( so-called "control points"). 
Both analytical problems are solved in static way by using a 
linear estimation process of the external orientation parameters 
and a linear prediction process of the cartographic control point 
coordinates (Crosilla and Visintini, 1996). Furthermore, the 
coordinates of the control points are obtained by different 
survey methods (e.g. by GPS measurements). 
This paper proposes a method to determine absolute orientation 
of the image in a dynamic way by a Kalman filter and by using 
digital map point coordinates as for formula (2 ). 

3. DEFINITION OF THE STATE EQUATIONS BY 
USING CUBIC SPLINE FUNCTIONS 

In general the transition matrix cD 1 for the state equations of a 

dynamic model is defined by physical-mechanical relationships 
( e.g. the law of motion in kinematic problems). 
In the case of dynamic orientation, the unknown quantities are 
assumed as a 6-row vector x1 of image external orientation 

parameters: 

(5) 

where: 

T1 = [E1 N1 H1r is the image position vector at time t; 

Ci = [rot +t ktr is the image direction vector at time t. 

The meaning of the time t is not intended in the physical sense, 
but instead like an ordinal succession of image acquisition 
epochs, independently from the time effectively passed for two 
sequential image acquisitions. 
The quantity x1 is a geometric quantity and, consequently, the 

transition matrix cD1 can be defined by geometric relationships 

extracted from a digital map. lf a digital map is not available, a 
traditional map can also be used after scanning and 
georeferencing processes. 
In a first step, n point coordinates are acquired with a mouse 
from a digital map, along the route covered by the MMS. 
The interpolation of these points by using a cubic spline 
function can be performed; in this way the equations of the 
"approximate trajectory" are obtained (see fig. 5). 
A number (n-1) of polynomials of kind (6) can be written 
(Rogers and Adams, 1990): 

where: 
t = s/sk+l is the normalized abscissa (0 S: t S: I); 

s is the curvilinear abscissa measured with a wheel counter; 
sk + 1 is the chord approximation among the (k+ l) points; 

F1k(t) = 2t3 - 3t2 + 1 F2k(•) =-2,3 +3,2 

F3k (t) = t( t 2 -2't + 1)8k+t F4k (t) = 't('t2 - t)Sk+l 
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Pk,Pk+l are the position vector of the k-th and (k+l)-th 

acquired points; 
Pk' ,Pk+i' are the angular tangent vector to the trajectory at the 

same points. 

Figure 5: Determination of the trajectory of a MMS by a cubic 
spline applied to points acquired from a digital map 

The values of Pk+I are computed by using the continuity 

tangent condition at any point k common to two following 
segments. In this case only the values of P1' and Pn' are 

required (Crosilla and Visintini, 1997). 
Since the digital sensor is fixed to the vehicle, the angular 
tangent Pk' corresponds to the shot direction for frontal image 

acquisition. Otherwise for other geometric configurations of 
acquisition, three known angles em , e <I>, e k of the matrix 

R~:~s reported in formula (I) exist between the shot 

direction and Pk'. 

As important result, Pk' is always related to the image direction 

Qt for any value ofk. Consequently, to determine P1' and Pn' 

it is sufficient that P1 and Pn correspond to shot points of 

images oriented by digital map points; that is the first and the 
last image of the sequence must be externally oriented. 
The state equations for Et ,N1 ,Ht of (5) can be immediately 

computed considering the components of Pk('t) in (6) along the 

East, North and Height directions: in a first step, for any 
segment k, in a second step, for any image acquired at different 
times t within the segment k, that is, according to the relation 
't = s/sk+I, for any measured abscissas. 

The state equations are: 

Et+l =Et +~t +µE =(1+ ~t)Et +µE 
,+1 Et t+t 

More complex is the computation of the state equations for 
rot,<l>t>kt of (5) since the angles at (azimuth) and 'l't (of 

height) contained in Pk' are defined with respect to the 

cartographic reference system (Euler angles). 

Since a geometric relationship exists between these angles and 
the Cardano rotation angles ro1, <l>t, used in photograrnrnetry, 

these angles can be indirectly derived from the definition of 

Pk'(s) = Bik +2B3ks+ 3B4ks2 , obtaining: 

@ 1 = arctg(::::) +000 

<l>t = arctg[ PE,' J +e<I> 

(PN, ')2 +(PH, ')2 
The increments ~co t , ~ 1 and the resulting terms Nm, , N 4l in 

the matrix «I>t are nwnerically derived, because they cannot be 

expressed with trigonometric relations. 
For the angle k1, considering a negligible rolling of the MMS: 

Summarizing, the state equations for Et ,Nt ,H1 ,cot,+t,kt are: 

It+I = <l>1Xt + µt+l (7) 
where: 

1 &-:1 +- 0 0 0 0 0 
Et µEi+1 

t mt 0 +-- 0 0 0 0 µNt+I 
N1 

µl\+1 Cl\= 0 0 I+ Afii 0 0 0 µt+l = 
µWt+t H1 

0 0 0 Nro, 0 0 µill+1 

0 0 0 0 Nell 0 µlci+1 

0 0 0 0 0 

4. DYNAMIC LINEAR MODEL 

As already mentioned, the model consists of: 

• observation equations: b1 = A 1x1 + v1 

• state equations: 

• prior information: 

Xi =«I>oxo +µ1 

i 0 =x0 +eg 

Combining the equations, it follows that: 

Vi -(O,I1) 
µ 1 -(o,e1) 

eg-(o,i:g) 

The constrained least squares adjustment leads to the homBLIP 

ofv1,µ1,e8: 

Replacing these values in the state equations, the inllomBLIP 
i 1 of x1 can be obatained: 

(8) 
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where: 

i 1 = <I> 0 i 0 is the homBLIP based on prior information only; 

Qi1 = ®1 +<I>o r8 <1>5 is the covarance matrix of i 1; 

K1 = Qi1A{[L1 +A1Qi1A{r is the Kalman gain matrix; 

z1 = b1 - A1i 1 is the pseudoinnovations vector. 

The covariance matrix of i 1 is: 

5. DYNAMIC LINEAR MODEL FOR THE SENSOR 
ORIENTATION 

The model consists of: 

• coplanarity equations (3) (relative orientation): 
ltqt = 0 

• collinearity equations ( 4) ( absolute orientation): 
g,(Ei,Ni,Hi,Et,Nt,Ht,rot,~,kt) 

Yt = -C-',o--------------'-
g2(E;, N; ,H; ,E1,N 1,Ht ,co t,'Pt, kt) 

• state equations (7) (by cubic spline functions): 
Xt+l = (I)txt + µt+l 

• prior information (best prediction obtained by the process 
until time t): 

1) For small displacements the state equations can be 
substituted by their differentials (Soatto, Frezza, Perona, 1996): 

Mt+! = xt+l - xt+l = F(xt)Mt + µt+ 1 

where F(xt) is the jacobian matrix. 
Since the state equations are linear in xt, it follows that: 

F(i1)=(~<I>txt) =<I>1 
8x1 ,-x, 

2) The observation equations are substituted by their linearized 
forms: 

l.t+tqt+t = h{xt+1>Y11+1 } = h{i1+1,bi.<+1}+G,.1 M1+1 +Dittt V11+1 = O 

Mt+1 = <I>oMt + µ1+1 

h{it+l• b11+1} = -c., •• Mt+! - » .... V1,.1 (9) 

Y21• 1 - g{it+i, Y1+1} = C2,.1 M1+1 + E2,.1s1+1 +v2,.1 

Setting: 

the observation equations can be written as: 

(10) 

According to the equation (8) the generic inltomBLIP of :s:1 now 
becomes: 

(11) 

where: 
iiit+1 = <I> 1iii't = <I>t(i1 - x1) = 0 since i 1 = :s: 1 ; 

Q·= = 01+1 +<1>1 r? <1>; u..Lt+l 

Kl+!= Qi cl+1[D1 Lj D[ +E1QxxE! +C1+1Qin c:+1]-I w w 

is the Kalman gain; 
zt+l = bt+I -Ct+liiit+I = b1+1 are the pseudoinnovations. 

Since it+1 = it+1 + &t+1, from (II) it results that: 

it+t =<I>tit +K1+1h1+1 

with a covariance matrix: 

6. EXTENDED DYNAMIC LINEAR MODEL 
(LOOK AHEAD FILTER) 

The model considers simultaneously: 

• two subsequent observation equations: 

h1=A1X1+V1 V1-(0,Z::1) 

b2 = A2>=2 +v2 v2 -(O,L2) 

(12) 

g1(···) j l ,- } 
Y; •. =-<: S2(··) =s1x1+1,Xi+1 =S1X1+1,Yt+I +Cz. •• &1+1 +J½..1st+1 +v:z. •• • two state equations: 

where: 

b1t+1 = y 11+1 + v 1,.1 coplanarity observation vector at time t; 

b2,., = y 2,.1 + v 21•1 coplanarity observation vector at time ( t+ 1 ); 

Yt+ 1 = Xt+ 1 + s1 + 1 vector of cartographic point coordinates; 

(·) (·) C =- D =-
1,.1 ox 1,.. Bb1 

~l+t,blt+l jxt+.,hlt+l 

The linearized model is: 

x1 = <I>oxo +µ1 µ1 -(O,E>1) 

xz = <I>1x1 +µ2 µz -(0,E>z) 

• one prior information: 

Io= Xo +eg e8 -(O,I8) 

Combining the equations, it results: 

b1 = A1<I>oi'o -A1<I>oeg + A1µ1 +v1 

b2 = A2[ <I>1 (<I>oio + µ1 - <I>oeg) + µz ]+ vz 
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Using these relationships and minimizing the Lagrangean 
function the least squares adjustment is obtained, from which, 

after some algebraic passages, the inhomBLIP i 1 of x1 and 

i 2 of x2 are obtained: 

- - -
i2 = cI>1 i1 + i:i2 = cI>1 i1 + K2z2 = i2 

where: 
i 1 = i 1 + K 1z1 is the inhomBLIP of x1 for a classical dynamic 

linear model; 

Qx1 = r? 
i 2 = cI>1 i 1 is the inhomBLIP of x2 based on prior information 

only; 
"'O T 

Qi2 = ®2 + cI>1 "-1 ©1 

K2 = ~I <l>{ AI[ L2 +A2~2 A} r is the extended Kalman gain; 

z2 = h2 -A2i 2 are the extended pseudoinnovations. 

The covariance matrices are: 

MSPE{i1} = Qi, = [I - K2A2c])i)Qi1 == 1:f 
MSPE{i2 } = Qi, = [I- K2A2 ]Qi, = L~ 

7. WAVE ALGORITHM 

A possible extension of the model reported in chapter 6 is the 
so-called "wave algorithm" (Wang, Schaffrin and Salychev, 
1995). The model consists of a series of N1 (with N1>2) 

subsequent observation equations and state equations: 
• observation equations for t=l, ... ,N1: 

h1 = A 1x1 +v1 v1 -(o,r1) 

• state equations for t=l, ... ,N 1: 

Xt = c])t-J'.1t-1 +61-l 

• prior information for t=O: 
- 0 Xo=Xo+eo 

In the wave algorithm the term 61_1 is different from zero only 

for a given tk, e.g. tk=l; from which: x1 = c])0x0 +60 . 

In this way, a set of N 1 observation equations and one pseudo­

observation equation can be written: 

b1 A1 0 

h2 A2<I>1 0 

= I - o+ 

bN, AN,cI>N1-l·· ·cI>1 0 

i1 I I 

with i 1 = II> 0i 0 . In compact form, it becomes: 

where: 

Applying a least squares adjustment, the solution for x1 and 

6 0 can be obtained: 

(13) 

where: 

T"'-1 ("' "'O"'T)-I N11 = A ..:.. A+ "'o ..:..o ....,o 

No1 ==-(c])oL8cI>J( =Nfo ( 0 T)-I Noo = c])o Loc])o 

C1 =ATL-1h+(c])ol:8<I>Jr\ 

8. WA VE ALGORITHM FOR THE SENSOR 
ORIENTATION 

The photogrammetric model consists of: 

• linearized observation equations [from (10)] 
(relative/absolute orientation) for t=l, ... ,N1 -1: 

ht= ct~t +E1St +Dtvt 

• differential state equations [ from (9. 1)] 
(by cubic spline functions) for t=l, .. . ,N1 -1: 

~t = c])t-1&:t-l +61-1 

• prior information (best prediction obtained by the process 
until time t): 

61_ 1 *O only for a given tk> e.g. tk=l; from which: 

&:, = cl>o&:o +60, 
Making the assumption that t= 1 is the epoch when the first 
image is oriented by digital map points, while t=N1 is the 

epoch when another image is oriented by digital map points, the 
equation set for the cycle t=l, ... ,N1 -1 contains a first image 

absolutely oriented by collinearity equations and (N1 - 2) 
images relatively oriented by coplanarity equations. 
The following system can be written: 

bi 

G t l· l~ 0 0 

r bi 

c,,~, ... .., ,-

Di ... 0 

bi.,-1 0 0 0 ... ~-1 0 vi.,--1 ~, 0 0 0 ... 0 I 0 

with M1 = c]) 0~ 0 . In compact form, it becomes: 
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[~]=[c 0IM1J+[G J{1] 
~I I -I 60 0 

where: 

[ ., 1 [ c, b2 CzlJ:>i 
b= C= 

bN,-1 CN,-1~1-2··-IJ:>i 

E1 D1 0 0 0 

0 0 D2 0 0 

G= J:: SJ -(O,Q11 ) 

0 0 0 DN,-1 0 

0 0 0 0 I 

SJ 0 Q., 0 0 0 

VI 0 0 L1 0 0 

y= Vz -(o,r)= 0 , 0 0 Z:2 0 

VN1-I OJ 0 0 0 LN,-1 

As for the relationship (13), using a least squares adjustment, 

the solutions for 6.i1 and 60 can be obtained: 

where: 

N11 = cTr-1c + 1 

c1 =CTr-1b +6.i1 

No1 = No1 = Noo = I 
Co = -6,xl 

while, according to Dermanis (1990c), the inhomBLIP Si 

follows from: 

si = Q51E![E1Q.1E{ +D1 L1 D[ + ... +DN,-1 LN,-t »i,-1 ]r 
where: 

[ b ] [C 0][6.i1] 
f= <ll0M 0 - I -I 60 

From this model, 6.i2, ... ,6.iN,-l can be obtained in recursive 

way from: 

The same process can be applied to any cycle of measurements 
(N1 , . .. ,N2 - 1), (N2 , ... ,N3 -1 ), .. . obtaining the estimations 

6N,-J, 6N2-I' .... 

Since the state equations are simply derived from cubic spline 
functions, they can be characterized by systematic errors. The 
estimation of 61k makes it possible to compensate for such 

errors in the state equations by introducing an "impulse vector" 
6 1k at some instants tk. 

9. CONCLUSIONS 

The use of an advanced Kalman filter teclurique, as for the 
''wave algorithm" with state equations defined by spline 
functions, seems to be promising for the digital sensor 
orientation of an MMS. This is the case when GPS 
measurements cannot be executed like, for instance, in cities 
centers. 
Furthermore, the dynamic model proposed in this paper 
satisfies the necessity for efficient tools for handling and 
processing large amounts of data. 
Finally the algorithm seems to be capable of integrating 
different sensor observations well (GPS, INS, images, digital 
points, .. . ), which is the challenge of the coming surveying era. 
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