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ABSTRACT 

This work concerns the reconstruction of 3-dimensional environments composed by n planes from a video sequence. 
The goal includes the recovery of precise metric information. The results could be conceivably used for many purposes, 
for example for the photogramrnetric reconstruction of buildings. The algorithm is based on the definition of an a-priori 
model of the probability distribution of the distance of the features from the walls. An unbiased estimate of a plane 
approximating a wall is obtained by maximizing the likelihood of the position of the features with respect to the wall. The 
scene is segmented in n planes applying statistical hypothesis testing techniques. 

1. Introduction 

The problem of estimating environments composed by n 
planes from a video sequence has been studied by many 
researchers see, for example, [9, 5, 11, 12}. In most of 
the previous work the estimates are the planes fitting, in a 
least square sense, the 3-D position of a number of point 
features Most features, however, do not actually belong 
to the wall, but are either slightly in front of the wall 
(paintings, hanging coats, etc.) or behind the wall ( dents, 
window frames, etc.). Rarely the distribution of the 
features is symmetric with respect to the wall and least 
square estimation techniques return biased estimates. One 
original aspect of our approach is that we assume an a­
priori probabilistic model of the distribution of the point 
features. We estimate the unknown parameters of the 
probabilistic distribution by maximum-likelihood 
techniques, in order to obtain an unbiased estimate of the 
position and orientation of the wall. This procedure is 
typical of digital photograrnmetry and is fundamental to 
obtain precise estimates in an automatic fashion. Using 
standard supervised photogrammetric techniques to 
compute the "ground-truth" we verify the precision of the 
estimates and compare it with those obtained by least 
square estimators. 
Based on the a-priori model of the distribution of the 
features, it is also possible to apply statistical hypothesis 
testing techniques to segment a scene composed by n 
walls in 11 planes. Two techniques for segmentation are 
presented: the first is a statistical test on the hypothesis 
that the parameters of the distribution of the features are 
constant, the second is a test on the whiteness of the 
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innovation of a Kalman filter which recursively updates 
the estimate of the parameters. 

2. Motion reconstruction and estimate of a single 
plane 

Many algorithms have been proposed for feature based 
motion and structure estimation from a monocular 
sequence of images, see [ 10 J for a survey and a unifying 
perspective on the most successful algorithms presented 
by different researchers. For the application presented in 
this paper, we used a scheme specifically derived for 
features that are distributed on planes originally proposed 
by J. Weng, T. S. Huang and N. Ahuja [14, 16] and then, 
slightly modified, by 0. Faugeras / 5]. The output of the 
algorithm are the parameters of motion that describe the 
trajectory of the videocamera with respect to a reference 
frame fixed with its initial position and the 3-D position of 

the features points Pk(xk .yk .zk), k = L. ... N always 

w.r. t . the same frame. The next step in the 
interpretation of the images consists in a highest level 
analysis in which feature points are grouped together 
when belonging to the same plane. Associating more 
points to single objects allows for better estimates of their 
position. Clearly, this kind of processing needs a set of a­
priori models describing those objects in the scene that 
one wants to identify and locate. H. Maitre /9 ], for 
example, assumes that the feature points may belong to 
planes or quadratic surfaces such as 



z == Ax+ By+C 

z == Ax2 +By2 +Cxy+Dx+Ey+F 

He estimates with a least squares algorithms the 
parameters { A. B. C. D. E. F} in order to locally describe 

the structure of the environment. Here, we propose a 
probabilistic model of the distribution of the features first 
applied by Cossi et al. in [4]. Details may also be found in 
[3]. The technique is based on the assumption that the 
features appearing in one image may: 
1. belong to a wall; 
2. be close to a wall, but not actually belong to it (they 

may, for example, belong to objects hanged to the 
wall); 

3. be far from the wall (they may, for example, belong to 
another wall). 

For each of these three classes one may introduce a 
probability density describing the position of the feature 
points relative to the wall. Let the wall be described by 
the plane of equation 

ax + by + CZ - d == 0 (/) 

The distance rk of a point of coordinates 

Pk == (xk ·Yk .zk) from the plane is given by 

Then, given the parameters [a,b.c,d] of plane (/), one 

can assume that the distance of the features belonging to 
class 1 from the wall can be described by the following 
probability density 

fi(rl[a.b,c.d]} == o(r) 

while for the features belonging to class 2 the distance 
may be described by the density 

and for those belonging to class 3, since they can be 
anywhere, the distance can be described by a uniform 
probability density 

h(r/[a.b.c.dl) == ljr', 

Choosing r' > d one can also model dents in the wall. 
The model must also take into account that the estimates 
of the position of the feature points Pk are noisy. If r1 , is 
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the true distance from the wall of a feature point, we 
assume that its measured distance r is distributed 
normally according to 

J(rlr) == - 1-e -½('::Y 
f J2,ro-

We obtain, therefore, the following probabilistic model 
for the distribution of the feature points conditioned to the 
parameters of the plane (I) 

J(r/[a.b,c,d]) == kifj)r/[a,b.c,d])+ 

+ k2J2,n(r/[a,b,c,d]} + 

+ k3.fJ)r/[a,b.c.dJ) 
(2) 

with k 1 + k 2 + k 3 == 1 and where, since the density of the 

sum of two independent r.v. 's is the convolution of the 
densities, the observations of the features belonging to 
class 1 are distributed according to 

( ) 1 _.!_('"-)2 
fi.n r/[a,b,c,d] == .J2,rtJ e 2 a 

those belonging to class 2 according to 

where Q is the complement of the Gaussian 

2 

Q(y) == k ("\-~ dy == 1-w(y) 

and those of class 3 according to 

The unknown parameters of this probabilistic model, 
including those describing the plane, are [a,b,c.d], A, 
1J and r ' . We estimate them by maximizing the 
likelihood (2) of the observations. 
The estimates, denoted as <PM.L , are smoothed by a 

Kalman filter integrating them in time. Let T and R be 
the translation and the rotation of the videocamera from 
one time instant t to the next t + 1 . The relationship 
between the coordinates P of one feature point w.r. t a 



reference frame fixed with the camera at the two 
consequent time instant is 

P,+i = R- ( P, - T) . 

If at time t the wall is described by equation n{ P, = d1 , 

at the next time instant, w.r. t the camera frame, it will 
be described by 

where nf+1 = R · n, and d1+1 = d1 - n{ · T. It is, then, 

possible to apply a K.F. to the dynamic model 

[d(t + 1)] [ I - J'l [d(t )] 
n(t + l) = 0 R · n(t) + v 

1 d(, + 1)] 
<PML(t + 1) = l,z{t + 1) + 1] 

(3) 

(4) 

where the process noise v is related to the noise in the 

estimates i and R of the motion parameters T and R 
while 17 is the error in the maximum likelihood estimates 
of the plane parameters whose variance may be 
approximated with the Cramer-Rao bound. Some results 
of simulations on real image sequences are presented in 
the figures shown in the last page. 

8. Scene segmentation 

We propose two techniques to segment the scene in n 
planes. The first one consists in the application of a 
statistical test on the hypothesis that the parameters 
estimated up to time are likely to describe also the 
probability distribution of the observations taken at the 
next time step t + 1 . 
A statistical hypothesis test [7} consists, in practice, in 
comparing the likelihood of the observations x with 
respect to two alternative hypothesis, H0 and H1 , on the 

parameters of the a-posteriori probability distribution of 
x . The test is designed on the values of type I and type II 
errors which consist, respectively, in rejecting H0 when it 

is true and accepting it when it is false. If the hypothesis 
H0 is simple /7/, then the probability of committing the 

error of type I can be computed as a function of the ratio 
between the likelihood of the observations given H 0 and 

the maximum of the likelihood of the observations given 
H formulate the hypothesis H 1 as follows 
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Ho : <PML (t + 1) = <PM.L. (t) . 

The test is then simply a comparison of the likelihood of 
the observations at time t + l given <PML. (t) with an 

appropriate threshold r a of type I is less than a . 
The second technique proposed for segmentation of the 
scene is based on the theory of the detection of abrupt 
changes [ 1]. The test checks whiteness of the innovation 
of the Kalman filter updating the maximum likelihood 
estimates of the parameters based on the dynamic model 
(4). 
The performance of the two techniques is comparable and 
some results on real image sequences are shown in the 
figures. 

Figure 1: 
algorithms. 

Sequence of images used to test the 
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Figure 2: Comparison between the estimated probability 
density of the distance of the point features from the wall 
and the experimental data. 
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Figure 3: The least square estimate of the position of the 
wall shows an unacceptable bias. The Kalman filter 
smoothes the maximum likelihood estimate and returns an 
unbiased precise estimate. 
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